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This paper presents the theoretical foundations of an innovative method for steganalysis of
digital images based on detecting violations of unimodality in the Walsh—Hadamard
transform spectrum. The method targets the detection of covert information transmission
channels in web applications, particularly in scenarios where users are allowed to upload
graphic content. The relevance of this research stems from the increasing use of modern
steganographic techniques that are resistant to classical steganalysis methods, thereby
posing potential threats of data leakage or the transmission of hidden commands within
seemingly legitimate content. The paper formalizes the concept of code-controlled
embedding in the spatial domain by selectively affecting individual Walsh—Hadamard
transformants. It is shown that such embedding leads to statistically significant deviations
from unimodality in the distribution of the corresponding spectral components, which can
serve as indicators of hidden activity. Two theoretical propositions are proven: the first
describes the expected statistical behavior of Walsh—Hadamard transformants in natural
images, while the second demonstrates the emergence of bimodal histograms under
steganographic embedding. The theoretical framework is supported by computational
experiments across large datasets of real-world images. The findings form a basis for the
development of effective detection systems for covert channels in web applications. The
proposed approach can be used to generate meaningful features for training artificial
intelligence models integrated into automated security testing pipelines, as well as for
monitoring uploaded content for the presence of hidden information. The method is format-
agnostic and retains effectiveness even under common attack conditions, such as lossy
JPEG compression.

Keywords: steganography; Walsh—Hadamard transform; code control; web application
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1. Introduction and statement of the problem. In the modern software development
lifecycle, security testing is critical to identifying vulnerabilities that may lead to unauthorized
access, data leakage, or system disruption. From a cybersecurity perspective, testing the
security of software components, particularly those exposed to user interaction, is essential for
identifying and mitigating threats and covert communication channels [1-3].

For web applications, one of the underexplored but increasingly relevant threats is the
use of steganographic methods to covertly transmit information via seemingly legitimate user-
uploaded content [4]. While legacy steganographic algorithms were often detectable using
classical steganalysis techniques [5], modern methods exhibit high resistance to traditional
detection, making them a greater threat in practice.

A notable example is a recently proposed method based on code-controlled embedding,
which allows selective modification of spatial regions of an image while maintaining the
ability to influence specific frequency components. This makes the approach robust to
steganalytic attacks and suitable for use in constrained environments such as mobile devices,
IoT systems, and UAVs, where computational resources are limited but reliability and stealth
remain important. Research has shown that this method achieves superior resistance to
detection compared to popular transform-domain methods, including those based on singular
value decomposition (SVD) [6...7].
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Prior research [8] demonstrated that the code-controlled embedding method exhibits
high robustness against known steganalysis tools such as StegExpose, which failed to reliably
detect covert messages even under ideal analysis conditions. Although some statistical signs
of embedding were identified, resulting in a preliminary steganalytic approach, its detection
accuracy was limited (~80%) and significantly decreased when the embedding density was
low or when lossy compression formats were applied.

The very concept of code-controlled embedding presents a major risk for web
infrastructure, as it enables the construction of covert communication channels that are
resistant to both perceptual and analytical detection. Addressing this threat requires the
development of new theoretical and algorithmic foundations for steganalysis, capable of
detecting such subtle manipulations.

In this context, the Walsh-Hadamard Transform offers a promising mathematical basis
due to its high computational efficiency and clear interpretability of its spectral components.
Theoretical analysis and empirical research presented in this paper demonstrate that Walsh-
Hadamard Transform domain features can reveal structural changes in image data resulting
from code-controlled embedding, particularly through violations of the unimodal distribution
of specific transformants. This paper lays a theoretical foundation for future Al-based
detection models capable of identifying covert channels in web applications.

The purpose of this paper is to improve the efficiency of detecting covert
communication channels based on the code-controlled steganographic method in web
applications.

The paper is structured as follows: Section 2 formalizes the concept of code-controlled

embedding and presents the core mathematical relationships. Section 3 provides an in-depth
analysis of the statistical behavior of Walsh-Hadamard Transform coefficients under
steganographic influence and demonstrates the presence of a bimodal distribution that can
serve as a detection criterion.
2. General definitions and mathematical foundations of code-controlled steganographic
method. One of the important tools for processing digital images in the context of
steganography and steganalysis is the two-dimensional Walsh-Hadamard Transform [9]. This
orthogonal transform is based on functions that take only the values +1 and —1, and allows
you to effectively represent the signal as a sequence of transformants that characterize its
frequency components.

Let a digital image block X of size NxN to be defined. Then the Walsh-Hadamard
transform of this block is defined as

1 . . . .
where H, =—=H, , X is a matrix of size Nx N, and the Hadamard matrix H, of order

NG

N is given by the Sylvester construction

H, :{Zz“ _b;} } H =1. )
k-1 2/(71

In addition to the two-dimensional Walsh-Hadamard transform, its one-dimensional
version is also known, which for a vector Y is given as

V=YH,, 3)

at the same time, in [10], a relationship was established between the two-dimensional and
one-dimensional versions of the Walsh-Hadamard transform, within the framework of which
it was proved that
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W=XH_,, (4)

where the notation /7 and X means the representation of the corresponding matrices of size

NxN in the form of a vector of length N° by sequential concatenation of the rows of the
corresponding matrix, while the calculation of the Walsh-Hadamard transformants is

performed with an accuracy of up to the normalization coefficient 1/N .

Expression (4) became the basis of the concept of code-controlled embedding of
additional information, which consists in the fact that the embedding occurs by representing

each information bit d, in the form of a codeword T, which selectively affects one or another

transformant of the Walsh-Hadamard transform, which is additively embedded in the
corresponding container block

M=X+T, (%)

then
W:MHNZ:(X+T)HN2:XHN2+THN2. (6)

As evident from equation (6), the influence on the Walsh—Hadamard transformants of
the container block is entirely determined by the structure of the transformants of the selected
codeword. Since the codeword selectively affects a specific Walsh—-Hadamard transformant,
this enables precise embedding of additional information into that particular transformant.

Let us consider a specific example for the block size 8x8. Let us give a container
block for which we find the matrix of the Walsh-Hadamard transformants

93 102 102 106 110 115 116 118
99 109 102 112 117 114 116 115
103 114 106 111 121 116 123 111
113 116 113 115 115 114 121 116/,
113 113 115 113 113 109 109 115
128 111 114 117 114 114 117 116
126 111 112 116 109 111 128 130
118 117 110 114 111 107 111 120 e

7256 -20 -64 40 -128 -40 80 20
-36 -4 40 -28 —68 0 0 -8
-102 22 6 2 30 14 -74 -10
=70 34 -6 -14 34 18 22 -58
-108 48 0 -8 -156 -108 -88 -20
-44 4 28 -8 20 -8 20 4
—-62 54 -54 22 70 14 42 -6
62 26 46 10 -10 62 50 62

as well as the codeword used to target the Walsh—Hadamard transformant (5,1), which
belongs to the lower-frequency components and, according to [11], provides the highest
robustness against attacks on the embedded message when used for additional data
embedding.
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Then, according to equation (6), the resulting steganographic message and its Walsh—
Hadamard transform coefficients will take the following form

94 103 103 107 111 116 117 119
100 110 103 113 118 115 117 116
104 115 107 112 122 117 124 112
114 117 114 116 116 115 122 117
112 112 114 112 112 108 108 114
127 110 113 116 113 113 116 115
125 110 111 115 108 110 127 129
117 116 109 113 110 106 110 119

7256 =20 -64 40 -128 -40 80 20
-36 -4 -40 -28 68 0 0 -8
-102 22 6 2 30 14 -74 -10
=70 34 -6 -14 34 18 22 -58
44 48 0 88 -—156 -108 —88 20/
-44 -4 28 -8 20 -8 20 4
-62 54 54 22 70 14 42 -6
62 26 46 10 -10 62 50 62 |

.

(10)

By comparing expressions (10) and (7), we conclude that the embedding of additional

information was performed specifically in the (5,1) Walsh—-Hadamard transformant, as it is
the only one among all transformants that underwent modification.
3. Analysis of the properties of Walsh-Hadamard transformants of digital images under
code-controlled embedding. Detecting steganographic messages requires a more detailed
analysis of the patterns to which the container is subjected during the steganographic
embedding process. Identifying such patterns, in turn, requires an understanding of the
probabilistic and structural characteristics of the Walsh-Hadamard transform coefficients of
real images.

Proposition 1. Let there be given a set of matrices WX/ of size N x N representing the

Walsh-Hadamard transformants of image blocks X, j=1,2,...,n, and each having the form

Wy Wy 0 Wy
w w O
— X;,21 X,;,22 X, 2N
Wy =| ! " b (11)
Wy v Wx,ova 0 Wy
then the sequence of transformants u, :[WX]J([ W g o mek,] has zero mathematical

expectation E[u,,]=0 forall &,/ except k=1[=1.

Proof. To prove Proposition 1, we note that according to (4) each matrix WX/ can be

represented as a vector of transformants Wx, =X;H , =[wy ;; Wy, .. Wyl of the

Walsh-Hadamard transform, thus ecach coefficient w, , obtained by multiplying the
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corresponding vector X formed by successive concatenation of the rows of the block matrix
X by the corresponding row of the Walsh-Hadamard matrix # ,, which by construction is a

Walsh function 4, oflength N *. Then we can write the corresponding coefficient Wy u @S
N2
WXj,kl :Zhg,axa . (12)
a=1

In other words, since the intensity values x, of the pixels of an arbitrary image do not

depend on the elements of the Walsh functions 7, ,, the mathematical expectation E[jo m

for each w ,, will be defined as

E[wy u1= E(4, ,x,]1=E[h, ,]E[x,]. (13)
Since by their construction the Walsh functions are balanced for any g =1, then

NZ
Z h,, =0, and therefore the product E[WXW] =0.

a=1

Given that E[wy ,,]1=0 for Vk,/ except k=1=1,i.e when g=1, we obtain E[u,,]=0

for any k,l except k =1=1, which proves the conditions of Proposition 1.

Computational experiment 1.

To practically verify the conditions of Proposition 1, we will perform the following
computational experiment. For a sample of 500 images from the NRCS database [12], we will
form a vector for blocks of size 4x4, 8x8, 16x16, after which we will find the average
value of the vector u,, elements for all values £,/ according to the block size.

The results of the computational experiment for blocks of sizes 4x4 and 8x8 are
shown in Table 1.

Empirically constructed average values of the transformants of the Walsh-Hadamard

transform
Table 1.

Block size 4x4
k/l 1 2 3 4
1 1.8-10° 0 0 0
2 0.1 0 0 0
3 04 0 0 0
4 0 0 0 0

Block size 8x8
k/[ 1 2 3 4 5 6 7 8
1 73.10° 0 0 0.2 -0.2 0 0 0
2 0.7 0 0 0.1 0 0 0 0
3 1.7 0 0 0 0 0 0 0
4 0.3 0 0 0.2 0 0 0 0

5 3.0 0.2 0 -0.1 0 -0.1 0 -0.1

6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
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Note that for blocks of size 16x16 the average value of the element (1,1) is equal to

2.9-10%, while other values in the computational experiment are practically equal to 0.

Analysis of the data in Table 1 leads to practical confirmation of Proposition 1, because
the average values of the transformants of the Walsh-Hadamard transform when averaging
over blocks are indeed close to 0 in practice, except for the case of values k=/=1.

Note that the standard deviation and dispersion of vector u,, values in practice depend
very much on the specific image and its structure, which, in our opinion, sets a number of
restrictions on their generalization and limits their application in practice for detecting
steganographic messages.

For greater clarity, let us form histograms of the distribution of vector u, and u,,

element values for the size of the blocks 8x8 (Fig. 1).
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Fig. 1. — Histogram of the distribution of element values for vectors u,; and u;,

Let us research the effect of steganographic transformation using the code-controlled
method with embedding additional information on the statistical characteristics of vectors u,, .

According to conditions (6) of using the code-controlled steganographic method with
codewords that selectively affect a given transformant, the Walsh-Hadamard transform leads
to a change in its value in each block by the value of N?.

Proposition 2. The histogram of the distribution of vectors u,, in which additional

information was embedded using the code-controlled steganographic method with codewords
based on Walsh functions, will have a bimodal character with maxima at points £N?.

Proof. To prove Proposition 2, we note that one of the important components of the
steganographic system is the precoder, the function of which is to form a sequence {d;} using
analog-to-digital conversion operations (if necessary), effective coding, noise-resistant coding
of information, and encryption. The use of high-quality encryption algorithms leads to a
uniform distribution of symbols "0" and "1" in the sequence {d,}. Therefore, in the context of

using the steganographic method with code control, we will assume that the distribution of
symbols in the sequence {d;} is uniform.

Taking into account the above, from a statistical point of view, steganographic message
vectors u,, can be represented as
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(14)

. |uy, + N?, with probability 0.5;
u, =
“ " |u,, — N?, with probability 0.5.

Since, according to the conditions of Proposition 1, the probability density fukl has a

maximum (since the random variable u,, is distributed according to a symmetric unimodal

distribution, which is confirmed by the obtained empirical data for a given sample of images,
the maximum of the probability density f, ~will coincide with its mathematical expectation)

at point 0.

Then the probability density f, (u, —N ’) has a maximum at u, —N>=0,, i.e. at

u, =N?. Similarly, f, (u, +N*) will have a maximum at u,+N*>=0, ie at u,=N".
Therefore, f,, will have two maxima: at points —N' and N, since both terms contribute their
maxima independently.

The above proves the conditions of Proposition 2.
Fig. 2 shows the u,, distribution histograms for the original image, as well as the
steganographic message for the transformant of the Walsh-Hadamard transform (5,1), into

which additional information was embedded using the corresponding codeword (9) of size
8x8.

- Histogram of Hadamard Transformant (5,1)
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Fig. 2. — Histogram of distribution of u;, for the original image and u;, for the

steganographic message

The analysis of the data in Fig. 2 confirms the conditions of Proposition 2: for a
steganographic message, unlike the original image, the distribution of the transformant of the
Walsh-Hadamard transform, which has undergone the embedding of additional information,
1s bimodal with maxima in the values =N = +64, which confirms that the size of the block in
which the embedding occurred is indeed N =8.

Obviously, taking into account the conditions of Proposition 2, this type of deviation of
the histogram of the distribution of vectors u,, from the classical unimodal probability

distribution is a sign of the use of a steganographic method with code control for embedding
additional information into a given transformant of the Walsh-Hadamard transform.

11
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An important factor influencing the practical applicability of Proposition 2 for detecting
the embedding of additional information embedded using the code-controlled steganographic
method is its robustness under disruptive conditions, in particular, compression attacks, which
are among the most common forms of attacks targeting embedded messages. Experimental
data [6] confirm the resilience of this method to such attacks.

Table 2 shows the histograms of steganographic message vectors u. that were

subjected to compression attacks against the embedded message with different values of the
quality factor QF ={100,80,60,40,20}.

Histograms of steganographic message vectors u;, for different QF compression levels
Table 2.

a0 Histogram of Hadamard Transformant (5,1) 1800 Histogram of Hadamard Transformant (5,1)
B Original W Original
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600 1400
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800
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400
100 200
0

1]
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OF=60 OF=40

Analysis of the data presented in Table 2 leads to the conclusion that, although image

compression leads to multimodality of the distribution of the Walsh-Hadamard transformants,
we see that for the steganographic message it remains noticeable due to a significantly higher
concentration of the Walsh-Hadamard transform values in the side lobes of the histogram,
while for the original images this concentration remains significant near the zero value. This
makes it possible to detect the embedding of additional information using the steganographic
method with code control using the conditions of Proposition 2, even after a compression
attack against the embedded message.
Conclusions. The paper proposes the theoretical foundations of the steganalysis method,
which is based on the detection of a violation of the unimodality of the distribution of the
Walsh-Hadamard transformants in images to which code-controlled steganographic
embedding has been applied. It is shown that such a feature allows us to formalize the
criterion for the presence of embedded information, which can be used for the automated
detection of covert channels in web applications.

The obtained analytical statements are confirmed by computational experiments that
demonstrate the high sensitivity of transformants histograms to the fact of embedding. In
particular, it was established that selective embedding leads to the formation of bimodal
distributions, which is a reliable sign of hidden influence.
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The proposed approach has practical significance for web application protection

systems that allow users to upload images. The theoretical framework developed in this paper
can be used as a basis for training artificial intelligence models capable of detecting atypical
patterns in image transformants that signal the presence of hidden messages.

Integrating such analysis into content monitoring will increase the level of information

security of web-based systems, complementing classic vulnerability detection methods with
mechanisms for controlling covert data transmission channels.
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BUABJIEHHS ITPUXOBAHUX KAHAJIIB Y BEB-3ACTOCYHKAX HA OCHOBI
AHAJII3Y INIOPYIIEHDb OJHOMOJAJIBHOCTI CIIEKTPA YOJIIHA-AJTAMAPA

A.l. Iuka

Hamionanpauit yHiBepcuTeT «Oechbka OpUIAYHA aKaIeMish
23, ®onTaHchka gopora, M.Oneca, 65009, Ykpaina

VY @il crarTi mpencTaBieHO TEOPETHYHI OCHOBH HOBOTO METONY CTEeraHOaHali3y HH(POBHX 300pakeHb,
3aCHOBAHOTO Ha BWSIBIICHHI MOpPYIIEHb YHIMOJAIBHOCTI B CIIEKTpi IepeTBOpeHHsS Yomma-Amxamapa. Merox
CTIpSIMOBaHMN Ha BUSIBICHHS IPUXOBAHUX KaHATIB mepemadi iHopmarii y BeO-3acTOCYHKax, 30KpeMa B
CLCHapisfX, J€ KOpPHCTyBauyaM JIO3BOJICHO 3aBaHTAXyBaTH TrpadidyHUil KOHTEHT. AKTYalbHICTH LBOTO
JOCITI/DKEHHST TIOB'SI3aHa 31 3pPOCTalOYMM BHKOPHCTAHHIM CYJaCHHX CTEraHorpaiqyHMX METOMiB, CTIMKHX 10
KIIACHYHUX METOJIIB CTEraHOAHANTI3Y, 10 CTBOPIOE MOTEHIIIHHI 3arpo3d BUTOKY JaHHX ab0 mepenadi IpHXOBaHUX
KOMaHJ| y MeXaX, 3/laBajlocst O, JIETITHMHOTO KOHTEHTy. Y CTaTTi (opMaii30BaHO KOHIIEMII0 KOJOBOTO
yIIpaBIiHHSA BOYZOBYBaHHSM B IIPOCTOPOBIH 00J1acTi IUITXOM BHOIPKOBOTO BIUIMBY Ha OKpeMi TpaHC(HOPMaHTH
nepeTBopeHHs Youa-Anamapa. [lokaszaHo, mio take BOYIOBYBaHHS IPH3BOIUTH O CTATUCTUYHO 3HAYYIMX
BiIXHJICHb BiJl YHIMOIATHHOCTI B PO3MOJUT BiAMOBIIHUX CHEKTPAIEHUX KOMITOHEHTIB, SKi MOXYTh CIYKUTH
IHIMKaTOpaMH TPUXOBaHOI aKTUBHOCTI. JlOBEJEHO /iBa TEOPETHUHYHI TBEPKEHHS: IEpIIe OMHCYE OYiKyBaHY
CTaTHCTUYHY TOBEIIHKY KOe(II[IEHTIB MepeTBOpeHHs Youa-Anamapa B MPUPOJHUX 300paKEHHSX, a Jpyre
JIEMOHCTpYE TOsBY OIMOJANbHUX TICTOrpaM Mpu creraHorpadiyHoMy BOYHOBYBaHHI. TeOpeTHUHY OCHOBY
MIATBEPXKYIOTh OOUUCITIOBATIbHI EKCIIEPUMEHTH Ha BEIMKUX HAOOpax NaHUX peaibHUX 300paxkeHb. OTpuMaHi
pe3ynbTatd GOPMYIOTh OCHOBY Ui PO3pOOKH e(hEeKTHBHHX CHCTEM BHSIBICHHS NMPUXOBAHHX KaHAIIB y BeO-
3aCTOCYHKaX. 3alpOIIOHOBAaHMH MiAXiZ MOXKe OyTH BHUKOPHUCTAHMH IS CTBOPEHHS 3HAUYLIMX O3HAK Il
HaBYAaHHS MOJEJeH MITYJdHOTO iHTEJEKTY, IHTETPOBAaHUX B aBTOMATH30BaHI KOHBEEPW TECTyBAaHHS O€3MEKH, a
TAKOX JJIi MOHITOPUHTY 3aBaHTQKEHOTO KOHTEHTY Ha HAsBHICTh MPUXOBaHOI iH(opMaIii. MeTox He 3a1eXuTh
Binm Qopmary Ta 30epirac eheKTHBHICTh HaBiTh 3a IMOIIMPEHWX yMOB aTakW, Takux sk crtucHeHHsI JPEG 3
BTpaTaMu.

KawuoBi ciioBa: creranorpadisi; nepeTBopeHHs Yonima-Anamapa; KOJOBE VIIpaBIiHHs;, Oe3rneka BeO-
3aCTOCYHKIB; TPHUXOBaHI KaHATH 3B'SI3KY, YHIMOJAIBHICTh pPO3MOMLTY; IH(PPOBI 300pa)keHHS; MAaIIWHHE
HaBYaHHS; CTEraHOaHai3; iHpopmariiiHa Oe3meka.

14



