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A rational choice of computing platform and software optimization that considers the
specifics of processor architecture can significantly reduce the time of complex
computations, improve overall system performance, and ensure efficient scalability when
processing large amounts of data. This study addresses the problem of accelerating
computational image processing algorithms, specifically the Gaussian smoothing algorithm,
using SIMD data-level parallelism technology. The Gaussian smoothing algorithm, which
is commonly used to reduce noise and remove small image details, is characterized by high
computational complexity due to the need to perform numerous arithmetic operations on
each pixel. In this regard, the optimization of such algorithms is a relevant task, and SIMD
technology offers the potential for parallel data processing using extended processor
instructions, thereby significantly enhancing computational performance. The aim of this
study is to enhance the efficiency of the Gaussian smoothing algorithm through SIMD-
based computation optimization. Two variants of the software implementation of the
studied algorithm have been developed: one is scalar and the other has been optimized
through the use of AVX-256 instructions. The optimized version employs computation
vectorization, processing eight pixels simultaneously using 256-bit registers, which
theoretically allows up to an eightfold speedup. Computational experiments were
conducted using images with resolutions of 1920x1080 and 2560x1440 pixels, across
various kernel radius and standard deviation values. The results demonstrated that
implementing SIMD instructions resulted in a speed enhancement ranging from 6.9 to 7.3
times when compared to the scalar approach. When the kernel radius increased, the
acceleration remained consistently high, confirming the approach’s effectiveness for more
complex computations. It was confirmed that execution time is primarily influenced by the
kernel radius, while the standard deviation has a lesser effect, since the radius defines the
filter’s area of influence. The speedup achieved in the experiments is close to the
theoretical maximum, demonstrating the advantages of the optimized implementation.
Future research prospects include combining SIMD optimization with multithreaded
processing and studying the potential of more powerful instruction sets such as AVX-512.
Keywords: image processing, Gaussian smoothing, SIMD, AVX-256, parallel data
processing.

Introduction. In today’s world of high-performance computing, efficient utilization of PC
hardware capabilities is pivotal for optimizing data processing speeds. This implies not only a
rational choice of computing platform, but also the optimization of software with regard to the
processor architecture's particular characteristics such as vector instructions (SIMD — Single
Instruction Multiple Data), multi-core processing, cache memory, and so forth. The
application of such approaches enables a significant reduction in the execution time of
complex computations, increases overall system performance, and ensures efficient scalability
when processing large amounts of data [1]. Processing large datasets, particularly images,
remains one of the most computationally intensive tasks. A typical example of such a task is
the Gaussian smoothing algorithm, which is widely used for noise reduction and removal of
details in digital images by performing a large number of similar arithmetic operations on
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each image pixel [2]. In the context of growing data volumes and increasing software
performance requirements, the optimization of such algorithms is becoming particularly
relevant.

SIMD technology provides the necessary tools for parallel data processing at the

processor instruction level. The core principle of SIMD is the execution of a single operation
simultaneously on multiple data elements, which significantly enhances computational
efficiency [3].
Related works. Image processing, particularly in artificial intelligence and computer vision
systems, demands faster and more efficient data processing, making hardware acceleration
with specialized equipment essential, as general-purpose CPUs face performance limitations
when processing high-resolution data in real-time [4].

Unlike scalar computations, where each processor instruction processes a single data
element, SIMD instructions operate on data vectors, enabling a significant increase in
computational performance for algorithms with a high degree of data-level parallelism.
Architecturally, SIMD is implemented by introducing specialized vector registers and
corresponding instruction sets into processors. In modern CPUs, the width of SIMD registers
has evolved from 64 bits in early implementations to 128, 256, and 512 bits in the latest
architectures, allowing for the simultaneous processing of 4, 8, or 16 single-precision
floating-point elements (32-bit floats), respectively [5, 6]. This architectural feature provides a
theoretical speedup of calculations proportional to the number of elements that fit within a
SIMD register. Consequently, SIMD is advisable to use in algorithms with iterative blocks
containing uniform arithmetic operations, where the computation of each subsequent element
is independent of the previous one.

A modified algorithm for solving the classical problem of multiplying ultra-large
square data matrices using SIMD technology demonstrates a speedup in the range of 2.53—
4.78x compared to traditional data processing methods and is independent of the amount of
processed data [7]. In graph algorithms, the use of SIMD increases efficiency on the central
processor. The evaluation results show that on an 8-core machine, enabling SIMD in a naive
multi-core implementation provides an additional speedup of 7.48x, averaged over ten
benchmarks and three input datasets [8]. The application of custom SIMD-oriented
optimizations improves the basic SIMD implementation by 1.67x and outperforms the scalar
version by 12.46x.

SIMD instructions can enhance prediction performance through compression/recovery
(CR) by up to 25% and reduce dynamic power consumption by up to 43% on real,
unmodified applications using predictive execution [9]. CR can also execute unmodified
legacy code with short vector instructions (AVX-2) on newer architectures with wider vectors
(AVX-512), achieving up to a 56% increase in performance.

In image processing workflows, SIMD is suitable for hardware acceleration using a
vector processor matrix to improve the performance of deblurring techniques for CT and MRI
images affected by artifacts [10], for lookup tables (LUT) aimed at efficient image
transformation on x86/64 processors by processing complex mathematical functions [11], and
in other algorithms such as Gaussian smoothing [2].

Gaussian blur is a fundamental operation in image processing based on the
convolution of an image with a Gaussian kernel. The basic principle of the algorithm involves
replacing the value of each pixel with a weighted sum of the values of its neighboring pixels,
where the weights are defined by the Gaussian kernel [12]. When implementing Gaussian blur
in software, the computational complexity of the algorithm is O(7*xn?) for an image of size
nxn and a kernel of size xr. In the context of large images or real-time applications, this level
of complexity can lead to unacceptable delays, making algorithm optimization essential.

A significant acceleration can be achieved by splitting the two-dimensional
convolution into two consecutive one-dimensional operations [13]. This fundamentally

16



[HO®OPMATUKA TA MATEMATUYHI METOW B MOJEJIFOBAHHI = 2025 = Tom 15, Ne 1

reduces the complexity to O(rxn?). The splitting principle is based on the property of the
Gaussian function, which allows the two-dimensional filter to be represented as the product of
two one-dimensional filters. To further accelerate the Gaussian blur algorithm, parallel
computing can be applied at various levels: for example, thread-level parallelism using
OpenMP [2] and instruction-level vectorization using SIMD [2, 14].

Parallelizing the modified 1D convolution across processing cores increases
performance by approximately 1.3x and reduces power consumption by 6.9% and 3.2% for
1D and 2D convolutions, respectively [2]. In [14], to improve the performance of one-
dimensional convolution operations, both data-level and thread-level parallelism were
employed using parallel programming models such as intraprocedural programming,
automatic compiler vectorization, and open multiprocessing. The experimental results
demonstrated that the performance of the obtained implementations significantly surpassed
that of other approaches. The performance of the multithreaded versions of all
implementations was greatly improved compared to single-core implementations, achieving a
speedup of 52.33x over the optimal scalar version.

Research Objective. The objective of the present study is to efficiently utilize SIMD
technology to accelerate image processing algorithms, with a focus on Gaussian smoothing as
a case study. The work is focused on analyzing the performance of the scalar implementation
of the algorithm and its optimized version using SIMD instructions, as well as demonstrating
how parallel data processing can improve computational efficiency in tasks with a high level
of computational complexity.
Main Part. Gaussian smoothing is implemented via the convolution operation of an image
with a two-dimensional kernel, the values of which are determined by the Gaussian function
[15]:
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where (x, y) — are the coordinates of a pixel relative to the center of the kernel; o — is the
standard deviation of the Gaussian distribution, which defines the degree of blurring.

In the software implementation of the algorithm, the two-dimensional kernel is
decomposed into two one-dimensional filters to optimize computational efficiency:
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Thus, the smoothing operation is represented as a sequential application of horizontal
and vertical one-dimensional filters:

I'(x,y)=Z;I(x—i,y—j)xG(i,j),

where / — is the input image, /' — is the result of the smoothing process.

The C++ code developed within the framework of this study implements the Gaussian
blur algorithm in two versions: scalar and optimized using SIMD technology based on the
AVX-256 instruction set, which is part of the x86-64 processor architecture extensions. The
code has been designed to process images represented as two-dimensional arrays of pixels.
The implementation comprises the generation of a Gaussian kernel, the application of
convolution in two directions (horizontal and vertical), and the comparison of the
performance of both methods. The process begins with the creation of a Gaussian kernel,
where the kernel size specifies the number of elements, and the standard deviation o controls
the width of the Gaussian curve, thereby determining the degree of image blurring. The kernel
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is formed based according to the mathematical formula for the Gaussian distribution.
Following the calculation of the kernel values, a process of normalization is then applied.

Image processing is carried out in two stages. The first stage involves horizontal
convolution. For each pixel at coordinates (x, y), a weighted sum of neighboring pixel values
in the horizontal row is calculated. The result is stored in an intermediate buffer of the float
data type. The second stage — vertical convolution — is performed in a similar manner, but on
the intermediate buffer: for each pixel at coordinates (X, y), a weighted sum of pixel values in
the vertical column is computed. The results are stored in an output array of the float data
type, which represents the final blurred image. Edge pixel processing (accesses beyond array
boundaries) at both stages is managed using a mirroring method, implemented via the
std::max and std::min functions applied to the corresponding indices.

The optimized version of the algorithm is implemented using AVX-256 instructions
from the <immintrin.h> header. This version also performs processing in two stages but
accelerates computation by vectorizing, processing data in blocks of eight pixels at a time.
The primary data type used for vector operations is  m256, which represents a 256-bit
register and contains eight values of the float data type [16]. During the horizontal
convolution stage, image rows are processed. For each row, the outer loop iterates over pixels
in steps of 8, matching the size of the m?256 vector. Within the loop, data is loaded from the
image array into the register using the mm256 loadu ps instruction. The core convolution
operation is executed using the mm256 fmadd ps (fused multiply-add) instruction, which
performs element-wise multiplication of the first two vectors and adds the result to a third,
returning a new _ m256 vector [16, 17]. Once convolution over all kernel elements is
complete, the result is stored in an intermediate buffer using mm256 storeu_ ps. If the image
width is not divisible by eight, the remaining pixels are processed sequentially using the
scalar method described earlier. Vertical convolution in the SIMD version is carried out
similarly, with adjustments for accessing columnar data.

The execution  time of  the algorithms is measured  using
std::chrono::high resolution clock from the <chrono> library [18].

In order to verify the accuracy of the results obtained from both versions, a
comparative analysis is conducted between them. Within a loop iterating over all pixels, the
absolute difference between corresponding float values is computed. If the difference exceeds
a threshold of 107, a discrepancy in the results is recorded.

Computational experiments were conducted using the following test environment:

CPU Intel Core i7-12700H, 14 cores, 20 threads; RAM 32 GB (2 Goodram DDR4: 16 GB,
3200 MHz); Microsoft Visual Studio C++ 2022 IDE; Microsoft Windows 10 OS,
<immintrin.h> library, SIMD AVX 256 bit, x64.
Results and Discussion. The experiments were conducted on a range of images with
resolutions of 1920x1080 and 2560 x1440 pixels. Each image underwent ten experimental
runs with varying blur radii and standard deviations. This experimental setup enables the
investigation of the impact of the blur radius and standard deviation on computation time.

The results obtained from the experiments conducted with various configurations and
image resolutions (Table 1 and Table 2) confirm the theoretical advantages of using SIMD
technology. For an image with a resolution of 1920x1080 pixels and a kernel radius of » =5,
the scalar implementation may take approximately 275 ms, whereas the optimized version
utilizing AVX instructions reduces this time to 40 ms, achieving a speedup of nearly 7x. For
higher resolutions such as 2560x1440, performance gains are also substantial: the scalar
version executes in approximately 480 ms, while the SIMD version completes in about 70 ms,
indicating consistent acceleration. Minor deviations from the theoretical maximum can be
attributed to overhead associated with data vectorization, result de-vectorization, and
processing of edge cases, which cannot be fully vectorized.
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An increase in the kernel radius up to 10 leads to an increase in computational
complexity; however, the relative acceleration achieved through SIMD remains substantial.
For an image with a resolution of 1920x1080, the scalar processing time increases to 475 ms,
while the SIMD-optimized version maintains a stable execution time of approximately 68 ms.
This scalability highlights the effectiveness of SIMD optimization for more complex
computations.

Table 1.
Experimental results for an image with a resolution of 1920x1080 pixels
Ne Kernel radius Standard Computation time, ms Acceleration
j r deviation o No-AVX AVX-256

1 1 275 40 6.88

2 2 271 39 6.95

3 5 3 279 40 6.98

4 4 279 40 6.98

5 5 280 40 7.00

6 1 470 68 6.91

7 2 475 68 6.99

8 10 3 472 68 6.94

9 4 473 68 6.96

10 5 475 68 6.99

Table 2.
Experimental results for an image with a resolution of 2560x1440 pixels
Ne Kernel radius Standard Computation time, ms Acceleration
) r deviation & No-AVX AVX-256

1 1 480 69 6.96

2 2 474 68 6.97

3 5 3 483 70 6.90

4 4 476 69 6.90

5 5 489 70 6.99

6 1 837 115 7.28

7 2 837 114 7.34

8 10 3 841 115 7.31

9 4 833 115 7.24

10 5 839 115 7.30

The obtained results demonstrate that the computation time is influenced by the kernel

radius r, whereas increasing the standard deviation o results in relatively stable execution time
(Fig. 1).

Figures 2 and 3 present the outcomes of image processing using the Gaussian
smoothing algorithm with various blurring parameters. As illustrated in Fig. 2, increasing the
standard deviation ¢ while maintaining the same radius  yields a noticeable effect, but it is
less significant compared to increasing the radius itself. In Fig. 3, more blurred images are
produced due to the increased radius. It can thus be concluded that the radius defines the
effective area of influence of the filter. It determines how many pixels surrounding each
processed pixel are taken into account for the blurring operation. When the radius is small,
even a large ¢ does not result in significant blurring, as pixels outside the radius are not
included in the computation.

19



900
800

]
(=]

w A U O 2
o © O
(= =)

Computation time, ms
S
&

200
100

0.0. Zhulkovskyi, H.Ya. Vokhmianin, I.I. Zhulkovska,
Yu.V. Ulianovska, E.A. Riabovolenko

—2560x1440 No-AVX

1920x1080 No-AVX
—1920x1080 AVX

2560x1440 AVX

r=10
r=>5
o p—
2 3 5 6 7 8 9 10

Experiment number

Fig. 1. Execution time results of computational algorithms for images of different resolutions

Original

Blur parameters: »=5; o= 1

Blur parameters: = 5; =2

Blur parameters: »=5; 0= 3

Blur parameters: » = 5; 0 =4

Blur parameters: »=5;6=5

Fig. 2. Image processing results with kernel radius » =5
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Original Blur parameters: » = 10; o = 1

Blur parameters: » = 10; 0 =2 Blur parameters: » = 10; 0 =3

Blur parameters: »

10;0=4 Blur parameters: » = 10; 6 =5

Fig. 3. Image processing results with kernel radius » = 10

Conclusions. The conducted research demonstrates the significant potential of utilising SIMD
instructions to optimize image processing algorithms, particularly those involving Gaussian
smoothing. The achieved speedup of 6.9-7.3x while maintaining identical output quality
confirms the effectiveness of this approach for practical applications. Theoretically, the
maximum increase in processing speed when using AVX-256 instructions for single-precision
data type operations is 8x, since a single register can accommodate eight values of the float
data type. The actual speedup obtained is close to the theoretical maximum, which indicates
the effectiveness of the implementation. The slight deviation from the theoretical maximum
can be attributed to overheads of data vectorization, result devectorization, and the processing
of edge cases that cannot be fully vectorized.

Future research directions include combining SIMD optimization with multithreaded
processing to achieve additional acceleration on multi-core processors, as well as exploring
the potential of other instruction sets, such as AVX-512.
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PanioHanbHuil BUOIp 00YHMCITIOBANBHOI IUIaTGOPMH, ONTHUMI3allis MPOrPaMHOro 3a0e3NedeHHs 3 ypaxyBaHHIM
0COOJIMBOCTEH apXiTEKTYpH MPOIecopa JO3BOJSE 3HAYHO 3MCHIINTH YaC BUKOHAHHS CKJIAJHUX OOYHCIICHB,
HIIBUIIMATH NPOJYKTHBHICTh CUCTEMU B IIJIOMY Ta 3a0e3neyrTd e(peKTHBHY MaclITaboOBaHICTh MpH oOpoOLi
BENIUKUX OOCSTriB AaHux. B poOOTI HOCHipKyeThcs mpobieMa NPUCKOPEHHS OOYMCIIOBAJIbHUX aJITOPUTMIB
00poOKH 300pakeHb, 30KpeMa aluropuTMy [ ayccoBOro 3ria/pKyBaHHs, i3 BHKOPHCTaHHSIM TEXHOJOTIi
napaneniamy Ha piBHI ganux SIMD. Ajroputm ['ayccoBOro 3riaJuKyBaHHS, SKHHA 3aCTOCOBYETBCS JUIS
3MEHILIEHHS LIyMy Ta BHJAJICHHS JpiOHMX JeTajedl 13 300pakeHb, XapaKTePU3YEThCS BUCOKOIO
OOYHUCITIOBATILHOIO CKJIAJHICTIO Yepe3 HEeOOXiJHICTh BUKOHAHHS YHCICHHHX apU(pMETHYHUX Olepaiii Haj
KOXKHUM ITiKceJaeM. Y 3B’3Ky 3 I[MM OINTHMIi3allisi TAKUX AITOPUTMIB € aKTYyaJbHOI 3a]]a4yel0, a TEeXHOJIOTIs
SIMD BinkpuBae MOXIMBOCTI ISl MapalielibHOI OOpOOKM NaHUX 3 BHUKOPHCTAHHSIM PO3MIMPEHHX 1HCTPYKIIiH
MPOIIECOPa, 110 J03BOJISIE CYTTEBO MiJBHUIIUTH MPOAYKTUBHICTH 00YHCIIEHb. METO0 JOCIIIKEHHSI € ITiIBUIICHHS
e(peKTHBHOCTI adroputMmy l'ayccoBoro 3riapKyBaHHS 3a paxyHoK SIMD-omrumizarii o6uucnens. Po3pobmeno
JBa BapiaHTH TPOTPaMHOI peamizamii TOCTIIHKYBAaHOTO AITOPUTMY — CKQJSIpHUH Ta ONTHUMI3OBaHHHA 3
BHKOPHCTaHHAM 1HCTPYKIiH AVX-256. OnTrMi3zoBaHa Bepcis aTOPUTMY 3aCTOCOBYE BEKTOPHU3AIIII0 OOUNCIICHB,
00poOII0YN OJHOYACHO BICIM miKcemB y 256-OiTHHX pericTpax, IO TEOPEeTHYHO MOXKe 3a0e3rnednTH
MIPUCKOPEHHS O BOCBMHU paziB. OOUMCITIOBANIbHI €KCIIEPUMEHTH IMPOBOAWINCS 13 300pakKeHHSAMH pO3MipaMu
1920x1080 ta 2560x1440 mikcemiB i3 pi3HUMH 3HaYEHHSAMH pajiyca spa Ta CTaHIAPTHOTO BiJIXUIICHHS.
Pesynpratn mokaszanu, mo BukopucTaHHsS SIMD-iHcTpykiii 3a0e3nedye NMpHUCKOpEHHST B Mexax 6.9-7.3x
TIOPIBHSHO 31 CKASIPHOIO peaizaiieto. [Ipu 30iabIIeHH] paaiyca sapa MPUCKOPSHHS 3aIHINANOCs CTalOiIbHO
BUCOKHUM, IO MATBEP/KYE eEeKTHUBHICTh MiIXOMYy AU OUIBII CKIamHUX oOuucieHb. IliaTBeppkeHo, mo vac
BUKOHAHHS 3aJICKUTH MEPEBAKHO Bija pajiyca sjpa, TOJI SK 3MiHA BIIXWICHHS MA€ MCHIIWN BIUIUB, OCKIJIBKH
paniyc Bu3Hauae 30Hy aii ¢inbTpa. OTpriMaHe B pe3ynbTaTi eKCIIEPUMEHTIB NMPUCKOPEHHS HAOIIKAETHCS 10
TEOPETUYHOTO MAaKCHMyMYy, JEMOHCTPYIOUM NepeBard ONTHMi3oBaHol peamizauii. [TepcriekTuBH momanbiinx
JOCHIKeHb Tiependavarots mnoemaHands SIMD-ontumizaiiii 3 06araTonoToyHOH OOpPOOKOH Ta BUBYCHHS
MOJIMBOCTEH BUKOPUCTAHHS O1JIbII IPOAYKTUBHUX IHCTpYKLil THIry AVX-512.

KurouoBi cioBa: o0poOka 300paxenb, ['ayccoBe 3rmamkysanus, SIMD, AVX-256, napanenbHa oOpoOka
JaHHX.
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