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Mathematical modeling of critical phenomena in systems described by island models is 

relevant. This is due to the fact that island models can be used to predict unstable states of 

elementary particles, which expands the possibilities of predicting processes in modern 

nuclear power engineering. Modeling of the vacuum-matter phase transition on the analysis 

of critical phenomena in island systems can be performed. The main provisions of the theory 

of catastrophes of Thom and phase transitions of Landau were used to predict the possibility 

of occurrence of critical phenomena in island systems. Calculations of phase states were 

made using the differential-topological approach. The results of the calculations indicate the 

possibility of fulfilling the conditions of phase transitions of the second kind, when two 

different phases of the system can coexist simultaneously. The system becomes unstable and 

can pass from one stable phase to another even with small fluctuations under such conditions. 

To calculate the phase states of island systems, the Plebanski-Demianski island model was 

studied taking into account rotation and acceleration. 

Keywords: coexistence of phases, critical phenomena, phase spaces, island systems, matrix 

determinant. 

 

Introduction. The prediction of the stability of island systems is directly related to the 

modeling of the stability of elementary particles [1 – 3], however, the problems of violation of 

the stability of phase states of such systems have not been sufficiently studied [4 – 7]. There 

are no studies that examine the conditions for the emergence of coexisting phases. However, 

the process of formation of critical spaces and spaces of coexistence of phases of different 

orders is possible in island systems under certain conditions [8 – 12]. Such states of the system 

can lead to a violation of stability [13 – 17]. The space of coexistence of phases arises when 

one stable state coexists with another stable state [18]. The appearance of such a space is a 

phase transition of the first kind, determined by Maxwell's principle. Two (or more) global 

minima of the potential function in such a space have the same depth [19]. The stable phase can 

become unstable at some points of the studied space, forming a bifurcation subspace [20]. Two 

phases in the critical region may become identical at some values of the order parameter. The 

emergence of identical phases may lead to the formation of a critical space of order two. In the 

presence of three or four identical phases, critical spaces of order three or four are formed, 

respectively [21]. The equation of state of the system specifies some n-dimensional manifold 

when describing phase transitions in the corresponding space. Thom's catastrophe theory can 

be used to estimate the features of the potential function of a self-organizing system in the case 

of using one order parameter. With this approach, catastrophe theory is considered as a 

generalized form of the Ginzburg-Landau phase transition theory [18]. However, to assess the 

conditions for the emergence of coexisting phases and to describe possible phase transitions in 

multicomponent systems, it is necessary to use approaches that allow one to analyze the features 

of potential functions of several order parameters. The properties of the Plebanski-Demianski 

island model [22] were studied using a non-orthogonal gradient tetrad. The Plebanski-
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Demianski model (eight-parameter solution of vacuum Einstein-Maxwell equations) was 

studied as a model of Schwarzschild, which contains a local singularity [19, 20]. The technique 

of computer modeling of the process of formation of critical spaces in complex multicomponent 

systems based on the use of a differential topological approach can be used. 

Lagrangian of the Plebanski-Demianski island model. In present communication we study 

the island model with Plebanski-Demianski type metric in the framework of Riemannian 

geometry with curvature flows of vacuum space-time. The difference between the equations 

obtained in our approach in the framework of this model and equations obtained in the 

framework of the Plebanski-Demianski model [22] is discussed for proposed of non-singular 

model obtaining. The class of space-time with signature (+, +, +, –) in the Plebiansky-

Demiansky model is investigated,  

described in coordinates 𝑥𝑖= (p, q, σ, τ): 

𝑑𝑠2 =
1

(𝑝+𝑞)2
{
1+(𝑝𝑞)2

𝑃
𝑑𝑝2 +

𝑃

1+(𝑝𝑞)2
(𝑑𝜎 + 𝑞2𝑑𝜏)2 +

1+(𝑝𝑞)2

𝑄
𝑑𝑞2 −

𝑄

1+(𝑝𝑞)2
(𝑑𝜏 − 𝑝2𝑑𝜎)2}       

 
(1) 

where 𝑃 = 𝑃(𝑝)  and 𝑄 = 𝑄(𝑞) are arbitrary structure functions depending on p and q, 

respectively. 

The Lagrangian was constructed on the basis of gradient vectors to model critical 

phenomena in the system under consideration (1): 

𝑚𝑖 =
𝜕𝑥0

𝜕𝑥𝑖
= (1,0,0,0),      𝑛𝑖 =

𝜕𝑥1

𝜕𝑥𝑖
= (0,1,0,0), 

                                             𝑝𝑖 =
𝜕𝑥2

𝜕𝑥𝑖
= (0,0,1,0),    𝑠𝑖 =

𝜕𝑥3

𝜕𝑥𝑖
= (0,0,0,1)   

 

(2) 

The local basis (2) in this case in the general case does not necessarily have to be 

orthogonal. The proposed approach allows us to obtain a metric tensor in the form of a bilinear 

combination of basis vectors, the coefficients of which will be functions, and the Lagrangian as 

a combination of these functions and their first derivatives. Thus, within the framework of the 

standard field theory, it is possible to obtain a Lagrangian for a rotating charged uniformly 

accelerated mass in GTR.  

From (1) and (2) it follows that 

𝑥0 = 𝜏,          𝑥1 = 𝜎,      𝑥2 = 𝑝,         𝑥3 = 𝑞,   (3) 
and the signature of the space has the form (–, –, –,+). Then, taking into account (3), expression 

(1) takes the form 

𝑑𝑠2 =
1

(𝑝 + 𝑞)2
{ 

𝑄

1 + (𝑝𝑞)2
(𝑑𝑥0 − 𝑝2𝑑𝑥1)2 −

𝑃

1 + (𝑝𝑞)2
(𝑑𝑥1 + 𝑞2𝑑𝑥0)2

−
1 + (𝑝𝑞)2

𝑃
𝑑𝑥2

2
−
1 + (𝑝𝑞)2

𝑄
𝑑𝑥3

2
} 

(4) 

 

The metric tensor corresponding to (1) will then have the form [23]: 

𝑔𝑖𝑘 = 𝐴𝑚𝑖𝑚𝑘 − 𝐵(𝑚𝑖𝑛𝑘 +𝑚𝑘𝑛𝑖) − 𝐶𝑛𝑖𝑛𝑘 − 𝐷𝑝𝑖𝑝𝑘 − 𝐹𝑠𝑖𝑠𝑘,                         
where 

𝐴 =
𝑄−𝑞2𝑃

(𝑝+𝑞)2(1+(𝑝𝑞)2)
, 𝐵 = 2

𝑝2𝑄+𝑞2𝑃

(𝑝+𝑞)2(1+(𝑝𝑞)2)
,  

 

(5) 

  𝐶 = −
𝑝4𝑄 − 𝑃

(𝑝 + 𝑞)2(1 + (𝑝𝑞)2)
,    𝐷 =

1 + (𝑝𝑞)2

(𝑝 + 𝑞)2𝑃
,    𝐹 =

1 + (𝑝𝑞)2

(𝑝 + 𝑞)2𝑄
  (6) 

are functions of coordinates. The components of the metric tensor and basis vectors with 

superscripts were found in the form: 
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𝑔𝑘𝑙 = (

𝐴 −𝐵 0 0
−𝐵 −𝐶 0 0
0 0 −𝐷 0
0 0 0 −𝐹

) ,   𝑔𝑖𝑘 =

(

 
 

𝐴𝐶

𝐴(𝐵2+𝐴𝐶)
−

𝐵

𝐴𝐶+𝐵2
0 0

−
𝐵

𝐵2+𝐴𝐶
−

𝐴

𝐴𝐶+𝐵2
0 0

0 0 −1/𝐷 0
0 0 0 −1/𝐹)

 
 
     

 

(7) 

𝑚𝑖 = (
𝐴𝐶

𝐴(𝐵2+𝐴𝐶)
; −

𝐵

𝐵2+𝐴𝐶
; 0; 0), 𝑛𝑖 = (−

𝐵

𝐴𝐶+𝐵2
; −

𝐴

𝐴𝐶+𝐵2
; 0; 0), 

𝑝𝑖 = (0; 0;−
1

𝐷
; 0) , 𝑠𝑖 = (0; 0; 0;−

1

𝐹
)   

 

(8) 

The Lagrangian of system (1) was represented as: 

                              𝐿 = 𝐺 = 𝛤𝑖𝑙
𝑚𝛤𝑘𝑚

𝑙 𝑔𝑖𝑘 − 𝛤𝑛𝑚
𝑚 𝛤𝑖𝑙

𝑛𝑔𝑖𝑙 = 𝛤𝑖𝑙
𝑚𝛱
(𝑠)

𝑚
.𝑖𝑙 − 𝛱

(𝑎𝑠)

𝑛𝑚
.𝑚 𝛤𝑖𝑙

𝑛𝑔𝑖𝑙,                         (9) 
where 

𝛤𝑖𝑙
𝑚𝛱
(𝑠)

𝑚
.𝑖𝑙 =

1

4
{−

2(𝐷𝑚𝑝
𝑚)2

𝐷
−
2(𝐹𝑚𝑠

𝑚)2

𝐹
−

1

(𝐵2+𝐴𝐶)2
[𝐴𝑚𝐴𝑚𝐶

2 + 4𝐴𝑚𝐵𝑚 − 2𝐴
𝑚𝐶𝑚𝐵

2 +

2𝐵𝑚𝐵𝑚(𝐵
2 − 𝐴𝐶) + 4𝐵𝑚𝐶𝑚𝐴𝐵 + 𝐶𝑚𝐶

𝑚𝐴2] −
𝐷𝑚𝐷

𝑚

𝐷2
−
𝐹𝑚𝐹

𝑚

𝐹2
}; 

 

𝛤𝑖𝑙
𝑚𝛱
(𝑠)

𝑚
.𝑖𝑙 =

1

4
{
𝐹𝛥

2

𝐹3
+
𝐷∗
2

𝐷3
+
𝐷𝛥

2

𝐹𝐷2
+

𝐹∗
2

𝐷𝐹2
−

2

𝐵2+𝐴𝐶
(
𝐵∗
2

𝐷
+
𝐵𝛥

2

𝐹
) +

1

(𝐵2+𝐴𝐶)2
[𝐴2(

𝐶∗
2

𝐷
+
𝐶𝛥

2

𝐹
) +

𝐶2(
𝐴∗
2

𝐷
+
𝐴𝛥

2

𝐹
) − 2𝐵2(

𝐴∗С∗

𝐷
+
𝐴𝛥С𝛥

𝐹
) + 4𝐵𝐶(

𝐴∗𝐵∗

𝐷
+
𝐴𝛥𝐵𝛥

𝐹
) + 4𝐴𝐵(

𝐵∗С∗

𝐷
+
𝐵𝛥С𝛥

𝐹
)]}; 

 

𝛱
(𝑠)

𝑛𝑚
.𝑚 𝛤𝑖𝑙

𝑛𝑔𝑖𝑙 =
1

4

1

(𝐵2 + 𝐴𝐶)2
[−𝐴2𝐶𝑛𝐶𝑛 − 4𝐵

2𝐵𝑛𝐵𝑛 − 𝐶
2𝐴𝑛𝐴

𝑛 − 4𝐶𝐵𝐴𝑛𝐵
𝑛

− 2𝐴𝐶𝐴𝑛𝐶
𝑛 − 4𝐴𝐵𝐵𝑛𝐶

𝑛]

+
1

𝐵2 + 𝐴𝐶
[−
2𝐴

𝐷
𝐶𝑛𝐷𝑛 −

4𝐵

𝐷
𝐵𝑛𝐷

𝑛 −
2𝐶

𝐷
𝐴𝑛𝐷

𝑛 −
2𝐴

𝐹
𝐶𝑛𝐹

𝑛

−
4𝐵

𝐹
𝐵𝑛𝐹

𝑛 −
2𝐶

𝐹
𝐴𝑛𝐹

𝑛 − 2𝐶𝐴𝑛𝑠
𝑛𝐹𝑙𝑠

𝑙 − 2𝐶𝐴𝑛𝑝
𝑛𝐷𝑙𝑝

𝑙

− 4𝐵𝐵𝑛𝑝
𝑛𝐷𝑙𝑝

𝑙 − 4𝐵𝐵𝑛𝑠
𝑛𝐹𝑙𝑠

𝑙 − 2𝐴𝐶𝑛𝑝
𝑛𝐷𝑙𝑝

𝑙 − 2𝐴𝐶𝑛𝑠
𝑛𝐹𝑙𝑠

𝑙] 

−
2(𝐷𝑛𝑝

𝑛)2

𝐷
−
2(𝐹𝑛𝑠

𝑛)2

𝐹
−
2

𝐷
𝐷𝑛𝑠

𝑛𝐹𝑙𝑠
𝑙 −

2

𝐷𝐹
𝐷𝑛𝐹

𝑛 −
2

𝐹
𝐷𝑙𝑝

𝑙𝐹𝑛𝑝
𝑛 −

1

𝐷2
𝐷𝑛𝐷

𝑛 −
1

𝐹2
𝐹𝑛𝐹𝑛. 

 

𝛱
(𝑠)

𝑛𝑚
.𝑚 𝛤𝑖𝑙

𝑛𝑔𝑖𝑙 =
1

4
{

1

(𝐵2+𝐴𝐶)2
[𝐴2(

𝐶∗
2

𝐷
+
𝐶𝛥

2

𝐹
) + 4𝐵2(

𝐵∗
2

𝐷
+
𝐵𝛥

2

𝐹
) + 𝐶2(

𝐴∗
2

𝐷
+
𝐴𝛥

2

𝐹
) +

4𝐶𝐵(
𝐴∗𝐵∗

𝐷
+
𝐴𝛥𝐵𝛥

𝐹
) + 2𝐴𝐶(

𝐴∗С∗

𝐷
+
𝐴𝛥С𝛥

𝐹
) + 4𝐴𝐵(

𝐵∗С∗

𝐷
+
𝐵𝛥С𝛥

𝐹
)] +

1

𝐵2+𝐴𝐶
[
2𝐴

𝐷
(
𝐶∗𝐷∗

𝐷
+

𝐶𝛥𝐷𝛥

𝐹
) +

4𝐵

𝐷
(
𝐵∗𝐷∗

𝐷
+
𝐵𝛥𝐷𝛥

𝐹
) + 

2𝐶

𝐷
(
𝐴∗𝐷∗

𝐷
+
𝐴𝛥𝐷𝛥

𝐹
) +

2𝐴

𝐹
(
𝐶∗𝐸∗

𝐷
+
𝐶𝛥𝐹𝛥

𝐹
) +

4𝐵

𝐹
(
𝐵∗𝐹∗

𝐷
+

𝐵𝛥𝐹𝛥

𝐹
) +

2𝐶

𝐹
(
𝐴∗𝐹∗

𝐷
+
𝐴𝛥𝐹𝛥

𝐹
) −

2𝐶𝐴𝛥𝐹𝛥

𝐹2
−
2𝐶𝐴∗𝐷∗

𝐷2
−
4𝐵𝐵∗𝐷∗

𝐷2
−
4𝐵𝐵𝛥𝐹𝛥

𝐹2
−
2𝐴𝐶∗𝐷∗

𝐷2
−

2𝐴𝐶𝛥𝐹𝛥

𝐹2
] −

2𝐷∗
2

𝐷3
−
2𝐹𝛥

2

𝐹3
+

1

𝐷2
(
𝐷∗
2

𝐷
+
𝐷𝛥

2

𝐹
) +

1

𝐹2
(
𝐹∗
2

𝐷
+

𝐹𝛥
2

𝐹
)}                                                                   

 

(10) 

Taking into account the results (9) and (10), the following was obtained: 
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𝐿 =
1

2𝐷𝐹
{−

1

(𝐵2 + 𝐴𝐶)2
[𝐵2(𝐹𝐴∗С∗ + 𝐷𝐴𝛥С𝛥) + 2𝐵2 (𝐹𝐵∗2 + 𝐷𝐵𝛥

2
)

+ 𝐴𝐶(𝐹𝐴∗С∗ + 𝐷𝐴𝛥С𝛥)]

+
1

(𝐵2 + 𝐴𝐶)
[𝐴𝐶𝛥𝐷𝛥 + 2𝐵𝐵𝛥𝐷𝛥 + 𝐶𝐴𝛥𝐷𝛥 + 𝐴𝐶∗𝐹∗ + 2𝐵𝐵∗𝐹∗

+ 𝐶𝐴∗𝐹∗ − 𝐹𝐵∗2 − 𝐷𝐵𝛥
2
] +

𝐹𝐷∗2

𝐷2
+
𝐷𝐹𝛥

2

𝐹2
}   

(11) 

  

The symbols * and ∆ mean differentiation with respect to the coordinates p and q, respectively. 

The structure functions in the limit of flat space-time [22] were represented as: 

𝑃(𝑝) =
𝑎

𝑠2𝑎2+1
[𝑎(1 − 𝑝4) −

(𝑠2𝑎2−1)

𝑠
𝑝2]  

𝑄(𝑞) =
𝑎

𝑠2𝑎2 + 1
[𝑎(1 − 𝑞4) +

(𝑠2𝑎2 − 1)

𝑠
𝑞2] 

(12) 

The parameter s is related to the rotation of space-time. Parameter а has the value of the 

acceleration. 

Taking into account (12), functions (6) will take the form: 

 

𝐴 =
𝑎{𝑎𝑠[1−𝑞4−𝑞2(1−𝑝4)]+(𝑠2𝑎2−1)(1+𝑝2)𝑞2}

𝑠(𝑠2𝑎2+1)(𝑝+𝑞)2(1+(𝑝𝑞)2)
  

𝐵 =
2𝑎2{𝑝2(1−𝑞4)+𝑞2(1−𝑝4)}

(𝑠2𝑎2+1)(𝑝+𝑞)2(1+(𝑝𝑞)2)
  

𝐶 = −
𝑎{𝑠𝑎[ 𝑝4(2−𝑞4)−1]+(𝑠2𝑎2−1)(1+𝑞2𝑝2)𝑝2}

𝑠(𝑠2𝑎2+1)(𝑝+𝑞)2(1+(𝑝𝑞)2)
  

𝐷 =
𝑠(1+(𝑝𝑞)2)(𝑠2𝑎2+1)

𝑎[𝑠𝑎(1−𝑝4)−(𝑎2𝑠2−1)𝑝2](𝑝+𝑞)2
  

𝐹 =
𝑠(𝑠2𝑎2+1)(1+(𝑝𝑞)2)

𝑎(𝑝+𝑞)2[𝑠𝑎(1−𝑞4)+(𝑎2𝑠2−1)𝑞2]
  

 

Predictive modeling of critical phenomena in island systems. Predictive modeling of critical 

phenomena of system (1) for the case a>0 and s>0 was carried out [22]. The position of the 

points in space at which the stability condition is satisfied was calculated from the system [20, 

21]: 

|∇⃗⃗ 𝐿| = 0; 𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
> 0, (13) 

 

Fig.1а. Results of modeling the surface of the Lagrangian gradient modulus |∇⃗⃗ 𝐿| in relative 

units 
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Fig.1b. Results of modeling the zero contour of the Lagrangian gradient modulus |∇⃗⃗ 𝐿| in 

relative units 

𝑋 = 𝑋(𝑝; 𝑞), 𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
= 𝑑𝑒𝑡

(

 
 

𝜕2(𝑝, 𝑞)

𝜕𝑝2
𝜕2𝐿(𝑝, 𝑞)

𝜕𝑝𝜕𝑞

𝜕2𝐿(𝑝, 𝑞)

𝜕𝑞𝜕𝑝

𝜕2𝐿(𝑝, 𝑞)

𝜕𝑞2 )

 
 

 

The results of modeling the surface of the Lagrangian gradient modulus  |∇⃗⃗ 𝐿|  and its 

zero contour in relative units are shown in Fig.1a and Fig.1b, respectively. 

The results of modeling the surface of the determinant 𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
  of the second derivatives 

of the Lagrangian and its zero contour in relative units are shown in Fig.2a and Fig.2b, 

respectively. 

 
Fig.2а. Results of modeling the surface of the determinant of the second derivatives of the 

Lagrangian in relative units. 

 
Fig.2b. Results of modeling the zero contour of the determinant of second derivatives in relative 

units 

The position of the points at which the conditions for the emergence of the bifurcation 

space of the studied model (1) are fulfilled was calculated from the system of equations [22, 

23]: 
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                                                    |∇⃗⃗ 𝐿| = 0; 𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
= 0 (14) 

The zero contour of the determinant of the second derivatives (𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
= 0) of the 

Lagrangian (9) is shown in Fig. 2b. The position of the points on the section of the phase 

diagram, in which the conditions for the emergence of a space of coexistence of two phases are 

fulfilled, was calculated from a system of equations and inequalities [22, 23]: 

|∇⃗⃗ 𝐿| = 0,        𝑑𝑒𝑡
𝑑2𝐿

𝑑Х2
= 0, 𝑑𝑒𝑡

𝑑3𝐿

𝑑Х3
= 0,  𝑑𝑒𝑡

𝑑4𝐿

𝑑Х4
> 0 

 
(15) 

where 𝑑𝑒𝑡
𝑑3𝐿

𝑑Х3
 is the determinant of the third derivative of the Lagrangian with respect to the 

arguments p and q. The block matrix diagonalization algorithm was used to obtain the matrix 

of third derivatives of the Lagrangian. Analytical expressions of the third partial derivatives of 

the Lagrangian were obtained in the first step. Two matrices of partial derivatives of the 

components of the matrix of second derivatives of the Lagrangian with respect to arguments p 

and q were formed, respectively: 

                                 
𝑑3𝐿

𝑑𝑝3
= (

𝜕3𝐿(𝑝,𝑞)

𝜕𝑝3
𝜕3𝐿(𝑝,𝑞)

𝜕𝑝𝜕𝑞𝜕𝑝

𝜕3𝐿(𝑝,𝑞)

𝜕𝑞𝜕𝑝𝜕𝑝

𝜕3𝐿(𝑝,𝑞)

𝜕𝑞2𝜕𝑝

) ,    
𝑑3𝐿

𝑑𝑞3
= (

𝜕3𝐿0(𝑝,𝑞)

𝜕𝑝2𝜕𝑞

𝜕3𝐿0(𝑝,𝑞)

𝜕𝑝𝜕𝑞𝜕𝑞

𝜕3𝐿0(𝑝,𝑞)

𝜕𝑞𝜕𝑝𝜕𝑞

𝜕3𝐿0(𝑝,𝑞)

𝜕𝑞3

) (16) 

The block-diagonal matrix of the third derivative of the Lagrangian of system (1) with 

respect to arguments p and q was obtained from (16) in the next step: 

𝑑3𝐿

𝑑Х3
=

(

 
 

𝑑3𝐿

𝑑𝑝3
0

0
𝑑3𝐿

𝑑𝑞3)

 
 
                      (17) 

The results of calculating the positions of the points of the surface of the determinant of 

the third derivative of the Lagrangian (9) and its zero contours are shown in Fig. 3a and Fig. 

3b, respectively. 

 
Fig. 3а. Results of calculating the surface of the determinant of the third derivative of the 

Lagrangian. 
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Fig. 3b. Results of calculation of zero contours of the determinant of the third derivative of the 

Lagrangian. 

 

The calculated surface of the determinant of the fourth derivatives of the Lagrangian (9) 

on the studied interval is shown in Fig.4.    

  

 
Fig. 4. Results of calculating the position of the points of the surface of the determinant of the 

fourth derivative of the Lagrangian in relative units 

 

Analytical expressions of the fourth partial derivatives of the Lagrangian (1) with 

respect to ),( qpХ  for calculating the determinant of the fourth derivative were obtained. 

Matrices of partial derivatives in the next step were composed: 

𝑑4𝐿

𝑑𝑝4
= (

𝜕4𝐿(𝑝,𝑞)

𝜕𝑝4
𝜕4𝐿(𝑝,𝑞)

𝜕𝑝𝜕𝑞𝜕𝑝2

𝜕4𝐿(𝑝,𝑞)

𝜕𝑞𝜕𝑝3
𝜕4𝐿(𝑝,𝑞)

𝜕𝑞2𝜕𝑝2

) ;   
𝑑4𝐿

𝑑𝑝3𝑞
= (

𝜕4𝐿(𝑝,𝑞)

𝜕𝑝3𝜕𝑞

𝜕4𝐿(𝑝,𝑞)

𝜕𝑝𝜕𝑞𝜕𝑝𝜕𝑞

𝜕4𝐿(𝑝,𝑞)

𝜕𝑞𝜕𝑝2𝜕𝑞

𝜕4𝐿(𝑝,𝑞)

𝜕𝑞2𝜕𝑝𝜕𝑞

) 

𝑑4𝐿

𝑑𝑞3𝑝
=

(

 
 

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑝2𝜕𝑞𝜕𝑝

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑝𝜕𝑞2𝜕𝑝

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑞𝜕𝑝𝜕𝑞𝜕𝑝

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑞3𝜕𝑝 )

 
 
; 
𝑑4𝐿

𝑑𝑞4
= 

(

 
 

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑝2𝜕𝑞2
𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑝𝜕𝑞3

𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑞𝜕𝑝𝜕𝑞2
𝜕4𝐿0(𝑝, 𝑞)

𝜕𝑞4 )

 
 
. 

The block-diagonal matrix 
𝑑4𝐿0

𝑑Х4
 was composed from the obtained matrices at the next 

step: 
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𝑑4𝐿0

𝑑Х4
=

(

 
 
 
 

𝑑4𝐿

𝑑𝑝4
0 0 0

0
𝑑4𝐿

𝑑𝑝3𝑞
0 0

0 0
𝑑4𝐿

𝑑𝑞3𝑝
0

0 0 0
𝑑4𝐿

𝑑𝑞4)

 
 
 
 

                                                   (18) 

Analysis of the position of the points of the surface of the determinant of the fourth 

derivative of the Lagrangian (9) of the system under study (1) showed that the condition 

𝑑𝑒𝑡
𝑑4𝐿0

𝑑Х4
> 0, that is, the positive signature of the calculated points of the surface of the 

determinant of the fourth derivative of the Lagrangian, is satisfied over the entire range of the 

phase space under study. The differential-topological method for calculating the position of the 

points of the phase space of system (1) in which the conditions for the emergence of phase 

coexistence spaces of order two are satisfied was applied. The positions of the points on the 

phase space at which conditions (15) are simultaneously satisfied in the region under study were 

determined. Analytical expressions for first- to fourth-order derivatives and calculations of the 

position of the surface points of the determinants of the corresponding derivatives using the 

open computer algebra system MAXIMA [24] were determined. The positions of the points on 

the section of the phase diagram of the existence of the system (1), in which the condition of 

coexistence of second-order phases (15) is fulfilled, are shown in Fig. 6. The conditions of zero 

values R of the derivatives from the first to the third inclusive and positive values of the fourth 

derivative of the Lagrangian (9) of the system under study (1) at these points are fulfilled 

simultaneously. The points in the phase space where the two phases coexist are located along 

the boundary of the found region (Fig. 6). Condition (15) is fulfilled along the boundary of the 

found space. Thus, the simulation results predict the emergence of spaces of coexistence of two 

phases near the found boundary. System (1) will be in different phases on both sides of the 

found boundary. 

 
Fig. 6. Results of calculations of the section of the phase diagram of the system (1). The 

positions of the points at which the condition of coexistence of second-order phases is fulfilled 

are shown (in relative coordinates). 

 

Conclusions. The results of modeling critical phenomena in island systems of the Plebanski-

Demianski type indicate the existence of a space in which the stability condition of the system 

under consideration is met, as well as the possibility of the emergence of bifurcation regions 

under certain conditions. Calculations of sections of phase diagrams of the considered system 

show that at certain values of parameters and independent coordinates of the model, the 

conditions for the emergence of phase coexistence spaces of order two will be fulfilled. Such 

states are unstable and can lead to the degradation of the system by a jump. The relativity of 

coordinates allows us to adapt the proposed approach to predict the emergence of critical spaces 

on phase sections of existence diagrams of both various elementary particles and island 

macrosystems. 
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МОДЕЛЮВАННЯ КРИТИЧНИХ ЯВИЩ В ОСТРІВНИХ СИСТЕМАХ 

ПЛЕБАНСЬКОГО-ДЕМ'ЯНСЬКОГО З УРАХУВАННЯМ ОБЕРТАННЯ ТА 

ПРИСКОРЕННЯ 
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Математичне моделювання критичних явищ у системах, що описуються острівними моделями, є 

актуальним. Це пов'язано з тим, що острівні моделі можуть бути використані для прогнозування нестійких 

станів елементарних частинок, що розширює можливості прогнозування процесів у сучасній ядерній 

енергетиці. Можна виконати моделювання фазового переходу вакуум-матерія на основі аналізу критичних 

явищ в острівних системах. Основні положення теорії катастроф Тома та фазових переходів Ландау були 

використані для прогнозування можливості виникнення критичних явищ в острівних системах. 

Розрахунки фазових станів були виконані з використанням диференціально-топологічного підходу. 

Результати розрахунків вказують на можливість виконання умов фазових переходів другого роду, коли дві 

різні фази системи можуть співіснувати одночасно. Система стає нестійкою та може переходити з однієї 

стабільної фази в іншу навіть з невеликими коливаннями за таких умов. Для розрахунку фазових станів 

острівних систем було досліджено модель острова Плебанського-Дем'янського з урахуванням обертання 

та прискорення. 

Ключові слова: співіснування фаз, критичні явища, фазові простори, острівні системи, матричний 

визначник. 


