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Mathematical modeling of critical phenomena in systems described by island models is
relevant. This is due to the fact that island models can be used to predict unstable states of
elementary particles, which expands the possibilities of predicting processes in modern
nuclear power engineering. Modeling of the vacuum-matter phase transition on the analysis
of critical phenomena in island systems can be performed. The main provisions of the theory
of catastrophes of Thom and phase transitions of Landau were used to predict the possibility
of occurrence of critical phenomena in island systems. Calculations of phase states were
made using the differential-topological approach. The results of the calculations indicate the
possibility of fulfilling the conditions of phase transitions of the second kind, when two
different phases of the system can coexist simultaneously. The system becomes unstable and
can pass from one stable phase to another even with small fluctuations under such conditions.
To calculate the phase states of island systems, the Plebanski-Demianski island model was
studied taking into account rotation and acceleration.

Keywords: coexistence of phases, critical phenomena, phase spaces, island systems, matrix
determinant.

Introduction. The prediction of the stability of island systems is directly related to the
modeling of the stability of elementary particles [1 — 3], however, the problems of violation of
the stability of phase states of such systems have not been sufficiently studied [4 — 7]. There
are no studies that examine the conditions for the emergence of coexisting phases. However,
the process of formation of critical spaces and spaces of coexistence of phases of different
orders is possible in island systems under certain conditions [8 — 12]. Such states of the system
can lead to a violation of stability [13 — 17]. The space of coexistence of phases arises when
one stable state coexists with another stable state [18]. The appearance of such a space is a
phase transition of the first kind, determined by Maxwell's principle. Two (or more) global
minima of the potential function in such a space have the same depth [19]. The stable phase can
become unstable at some points of the studied space, forming a bifurcation subspace [20]. Two
phases in the critical region may become identical at some values of the order parameter. The
emergence of identical phases may lead to the formation of a critical space of order two. In the
presence of three or four identical phases, critical spaces of order three or four are formed,
respectively [21]. The equation of state of the system specifies some n-dimensional manifold
when describing phase transitions in the corresponding space. Thom's catastrophe theory can
be used to estimate the features of the potential function of a self-organizing system in the case
of using one order parameter. With this approach, catastrophe theory is considered as a
generalized form of the Ginzburg-Landau phase transition theory [18]. However, to assess the
conditions for the emergence of coexisting phases and to describe possible phase transitions in
multicomponent systems, it is necessary to use approaches that allow one to analyze the features
of potential functions of several order parameters. The properties of the Plebanski-Demianski
island model [22] were studied using a non-orthogonal gradient tetrad. The Plebanski-
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Demianski model (eight-parameter solution of vacuum Einstein-Maxwell equations) was
studied as a model of Schwarzschild, which contains a local singularity [19, 20]. The technique
of computer modeling of the process of formation of critical spaces in complex multicomponent
systems based on the use of a differential topological approach can be used.

Lagrangian of the Plebanski-Demianski island model. In present communication we study
the island model with Plebanski-Demianski type metric in the framework of Riemannian
geometry with curvature flows of vacuum space-time. The difference between the equations
obtained in our approach in the framework of this model and equations obtained in the
framework of the Plebanski-Demianski model [22] is discussed for proposed of non-singular
model obtaining. The class of space-time with signature (+, +, +, —) in the Plebiansky-
Demiansky model is investigated,

described in coordinates x‘= (p, q, o, 7):

2_ 1 A+@d)? 5 o p 2742 4 H@@2 5 5 Q 2 2
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1)

where P = P(p) and Q = Q(q) are arbitrary structure functions depending on p and q,
respectively.

The Lagrangian was constructed on the basis of gradient vectors to model critical
phenomena in the system under consideration (1):

0 1
ml’ - % = (1101010)1 n’i = % = (011’0’0)’
2 3
pi = % = (0,0,1,0), Si = % = (0101011) (2)

The local basis (2) in this case in the general case does not necessarily have to be
orthogonal. The proposed approach allows us to obtain a metric tensor in the form of a bilinear
combination of basis vectors, the coefficients of which will be functions, and the Lagrangian as
a combination of these functions and their first derivatives. Thus, within the framework of the
standard field theory, it is possible to obtain a Lagrangian for a rotating charged uniformly
accelerated mass in GTR.

From (1) and (2) it follows that

x0 =1, x!=0, x?=p, x3 =q, (3)
and the signature of the space has the form (-, —, —,+). Then, taking into account (3), expression
(1) takes the form

1 Q
ds? = dx® — p?dx1)? — dx! + q%dx%)?
(p+q)2{1+(pq)2( ) 2 )

1+ (pa) (@)
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The metric tensor corresponding to (1) will then have the form [23]:
Gir = Amymy, — B(myny, + myn;) — Cnyny — Dpipy — Fs;Sy,

where
_ 0-q2P _ p2Q+q2P (5)
T2+’ T T (e+ra)2a+ea?)’
___ p'e-p _ 1+ 1+ @9* ©)
@+ >+ (@2’ (p + q)?P’ (» +q)?Q

are functions of coordinates. The components of the metric tensor and basis vectors with
superscripts were found in the form:
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The Lagrangian of system (1) was represented as:
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Taking into account the results (9) and (10), the following was obtained:
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1

L =
2DF

{ |B2(FA*C’ + DAAC?) + 2B2 (FB*? + DB)

(B + AC)?
+ AC(FA*C* + DA“CA)]

(11)

+ C2DA + 2BB4D4 + CA*D? + AC*F* + 2BB*F*

1 [A
(BZ + AC)

FD*? pFA?
Dz TR

+ CA*F* — FB* — DBAZ] +

}

The symbols * and A mean differentiation with respect to the coordinates p and g, respectively.
The structure functions in the limit of flat space-time [22] were represented as:

P() = oo [a(1 - p*) - T2

s?aZz+1 s
2g%2 -1 (12)
Q(q) = P 1 la(l -q*)+ qul

The parameter s is related to the rotation of space-time. Parameter a has the value of the
acceleration.
Taking into account (12), functions (6) will take the form:

af{as[1-q*-q?(1-p*)]+(s%a?-1)(1+p?)q?}
s(s2a?+1)(p+q)*(1+(pq)?)
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s(s?a?+1)(1+(pq)?)
T a(p+9)2[sa(1-q*)+(a?s2-1)q?]

A=

Predictive modeling of critical phenomena in island systems. Predictive modeling of critical
phenomena of system (1) for the case a>0 and s>0 was carried out [22]. The position of the
points in space at which the stability condition is satisfied was calculated from the system [20,
21]:
- d’L
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I_V.L0 | (rel. units)
160
140
120
100
80

60
40

4

Z

\

3 a3 8 5 et 3

50
45

40
p (rel. units)

10 10

Fig.1a. Results of modeling the surface of the Lagrangian gradient modulus |VL| in relative
units
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Fig.1b. Results of modeling the zero contour of the Lagrangian gradient modulus |VL| in
relative units

*(p,q) 9°L(p,q)

d*L op? dopdq
X =X(p;q), det— = det
i), detgm=detl ga1 00y 22L(na) |
dqop aq? /

The results of modeling the surface of the Lagrangian gradient modulus |_V7L| and its
zero contour in relative units are shown in Fig.1la and Fig.1b, respectively.

2
The results of modeling the surface of the determinant det % of the second derivatives

of the Lagrangian and its zero contour in relative units are shown in Fig.2a and Fig.2b,
respectively.
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Fig.2a. Results of modeling the surface of the determinant of the second derivatives of the
Lagrangian in relative units.
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Fig.2b. Results of modeling the zero contour of the determinant of second derivatives in relative
units

The position of the points at which the conditions for the emergence of the bifurcation
space of the studied model (1) are fulfilled was calculated from the system of equations [22,
23]:
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o d?L
[VL| = o; det =7 =0 2 (14)
The zero contour of the determinant of the second derivatives (det—zxﬁ = 0) of the

Lagrangian (9) is shown in Fig. 2b. The position of the points on the section of the phase
diagram, in which the conditions for the emergence of a space of coexistence of two phases are
fulfilled, was calculated from a system of equations and inequalities [22, 23]:

= d?L d3L d*L
[VL| =0, det— =0, det— =0, det—=>0 (15)

3
where det% is the determinant of the third derivative of the Lagrangian with respect to the

arguments p and g. The block matrix diagonalization algorithm was used to obtain the matrix
of third derivatives of the Lagrangian. Analytical expressions of the third partial derivatives of
the Lagrangian were obtained in the first step. Two matrices of partial derivatives of the
components of the matrix of second derivatives of the Lagrangian with respect to arguments p
and g were formed, respectively:

33L(p.q) 93L(p.q) 3Lo(pq) 93Lo(.9)
da3L op3 dpdqdp a3L dp2dq dpdqdq 16
ap3 ~ \ *La) BPLwa) | ' dq® |\ 3Loa) 93Lo(».q) (16)
dqdpdp  9q?dp dqdpaq aq3

The block-diagonal matrix of the third derivative of the Lagrangian of system (1) with
respect to arguments p and g was obtained from (16) in the next step:

d3L 0\
d3L dp3
| “P | (17)

ax3 . d3L
\ dq®

The results of calculating the positions of the points of the surface of the determinant of
the third derivative of the Lagrangian (9) and its zero contours are shown in Fig. 3a and Fig.
3b, respectively.
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Fig. 3a. Results of calculating the surface of the determinant of the third derivative of the
Lagrangian.
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Fig. 3b. Results of calculation of zero contours of the determinant of the third derivative of the
Lagrangian.

The calculated surface of the determinant of the fourth derivatives of the Lagrangian (9)
on the studied interval is shown in Fig.4.
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Fig. 4. Results of calculating the position of the points of the surface of the determinant of the
fourth derivative of the Lagrangian in relative units

Analytical expressions of the fourth partial derivatives of the Lagrangian (1) with
respect to X(p,q) for calculating the determinant of the fourth derivative were obtained.
Matrices of partial derivatives in the next step were composed:

0*L(p,q) 0*L(p.q) 0*L(p,q)  9*L(p.q)
ﬂ _ op*t dpdqop? | d*L _ | op3dq  0pdqopdq
dap* |\ 9*Lp.a) 9*L(p.q) |’ dp3q |\ 9*Lpa)  9*L(p.g)
dqap3 dq20p? dqop2dq 0q%0pdq
0*Lo(p,q) 0*Lo(p,q) 0*Lo(p,q) 0*Lo(p, @)
d*L | 0p2dqdp dpdq?dp | d*L _ | 9p2dq>  Opdq?

dg’p | 9*Lo(.@) 9*Lo(p,@) |" dq* | 9*Lo(p,q) 9*Lo(p.q)
dqopdqdp  0q3dp dqopdq? dq*
‘f;Lf was composed from the obtained matrices at the next

The block-diagonal matrix "

step:
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2Ly o 0\
dp*

d*L
o, | 0 = 0 0 |
s . (18)
0 0 = 0 |
o o o %
dq*

Analysis of the position of the points of the surface of the determinant of the fourth

derivative of the Lagrangian (9) of the system under study (1) showed that the condition

4
det% > 0, that is, the positive signature of the calculated points of the surface of the

determinant of the fourth derivative of the Lagrangian, is satisfied over the entire range of the
phase space under study. The differential-topological method for calculating the position of the
points of the phase space of system (1) in which the conditions for the emergence of phase
coexistence spaces of order two are satisfied was applied. The positions of the points on the
phase space at which conditions (15) are simultaneously satisfied in the region under study were
determined. Analytical expressions for first- to fourth-order derivatives and calculations of the
position of the surface points of the determinants of the corresponding derivatives using the
open computer algebra system MAXIMA [24] were determined. The positions of the points on
the section of the phase diagram of the existence of the system (1), in which the condition of
coexistence of second-order phases (15) is fulfilled, are shown in Fig. 6. The conditions of zero
values R of the derivatives from the first to the third inclusive and positive values of the fourth
derivative of the Lagrangian (9) of the system under study (1) at these points are fulfilled
simultaneously. The points in the phase space where the two phases coexist are located along
the boundary of the found region (Fig. 6). Condition (15) is fulfilled along the boundary of the
found space. Thus, the simulation results predict the emergence of spaces of coexistence of two
phases near the found boundary. System (1) will be in different phases on both sides of the
found boundary.

q (r.cl, units)
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Fig. 6. Results of calculations of the section of the phase diagram of the system (1). The
positions of the points at which the condition of coexistence of second-order phases is fulfilled
are shown (in relative coordinates).

Conclusions. The results of modeling critical phenomena in island systems of the Plebanski-
Demianski type indicate the existence of a space in which the stability condition of the system
under consideration is met, as well as the possibility of the emergence of bifurcation regions
under certain conditions. Calculations of sections of phase diagrams of the considered system
show that at certain values of parameters and independent coordinates of the model, the
conditions for the emergence of phase coexistence spaces of order two will be fulfilled. Such
states are unstable and can lead to the degradation of the system by a jump. The relativity of
coordinates allows us to adapt the proposed approach to predict the emergence of critical spaces
on phase sections of existence diagrams of both various elementary particles and island
macrosystems.
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MOJAEJIOBAHHA KPUTHYHUX ABUI B OCTPIBHUX CUCTEMAX
INIEBAHCBKOT'O-AEM'SSHCBKOI'O 3 YPAXYBAHHSAM OBEPTAHHSA TA
ITPUCKOPEHHSAA

I'.B. [lanoeanos?, A.I. Kazaxog?, 1O. MyHT;IHZ,

'Hanionansnuii yaisepcurer «Onechka MOMTEXHIKA»
1, lleBuenka np., Oneca, 65044, Ykpaina
2OnechKa HAIliOHATBHA MOPCHKA aKaIeMis

8, Hdimpixcona Byi., Oneca, 65052, Ykpaina
30pechKuii HAlliOHANBHUI YHIBEPCHTET
2, 3mienka Byn., Oneca, 65026, Ykpaina

MareMaTiyHe MOJICTIOBAHHSA KPUTHYHUX SBHUL y CHCTEMax, IO ONUCYIOThCS OCTPIBHHUMH MOJICISIMH, €
akTyansHUM. L{e TToB'sI3aHO 3 THM, 1[0 OCTPIBHI MOJEIi MOXYTh OYTH BUKOPUCTAHI AJIsI TPOTHO3YBAaHHS HECTIMKHX
CTaHiB €NEMEHTAPHUX YACTHHOK, L0 PO3IIMPIOE MOIIMBOCTI NMPOTHO3YBaHHS HPOLECIB Yy Cy4acHid snepHiit
eHepreTrli. Mo)xHa BUKOHATH MOJCITIOBaHH: (Pa30BOro Nepexoy BaKyyM-Matepisi Ha OCHOBI aHaIi3y KpUTHYHHX
SIBHII B OCTPiBHUX cucTeMax. OCHOBHI moyioskeHHs Teopii kaTtactpod Toma Ta azoBux nepexoxis Jlannay Oyim
BUKOPHCTaHI Ui TNPOTHO3YBaHHS MOXJIMBOCTI BHHUKHEHHS KPUTHYHHMX SBHII B OCTPIBHHX CHCTEMax.
Po3paxynku ¢a3oBux cTaHiB OynM BUKOHAHI 3 BUKOPHCTaHHIM IH(EpeHIiaJbHO-TOMOJIOTIYHOTO MiAXOMIY.
Pe3ysnbpraTu po3paxyHKiB BKa3ylOTh Ha MOXKJIMBICTh BUKOHAHHS YMOB (pa30BHX IEPEXO/iB Ipyroro poay, KOJiu JBi
pi3Hi (aszu crucTeMu MOXKYTh CIIBICHYBaTH ofiHOYacHO. CHCTeMa CTae HECTIMKOIO Ta MOXKE IEPEXOAUTH 3 OJIHIeT
cTabinbHOT (ha3u B iHINY HABITh 3 HEBEIIMKMMHU KOJIMBAHHIMM 32 TakuxX YMOB. J{Jist po3paxyHKy (a30BUX CTaHIiB
OCTPIBHHX CHCTEM OYJIO IOCIIHKEHO MOEab ocTpoBa [liebanchkoro-/IeM'sHCHKOTO 3 ypaxyBaHHIM 00epTaHHS
Ta MPUCKOPEHHS.

Karwu4osi cioBa: criBicHyBaHHs (a3, KPUTHYHI SBUINA, (a3oBi MPOCTOPH, OCTPiBHI CHUCTEMH, MATPUIHUI
BU3HAYHHK.
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