[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJIEJITFOBAHHI = 2026 = Tom 16, Ne 1

DOI 10.15276/imms.v16.n01.43 Informatics and Mathematical Methods in Simulation
UDC 004.4°4: 004.23 Vol.16 (2026), No. 1, pp. 43-51

PROBLEMS OF AUTOMATIC CODE OPTIMIZATION BY THE COMPILER

I. Zhulkovska?!, O. Zhulkovskyi!,
T. Rudianova?, O. Lebid?, M. Mormul?

!Dniprovsky State Technical University
2, Dniprobudivska str., Kamianske, 51918, Ukraine
2University of Customs and Finance
2/4, Volodymyr Vernadskyi str., Dnipro, 49000, Ukraine
Email: olalzh@ukr.net

Rational use of modern compiler capabilities, in particular automatic SIMD vectorization,
enables significant improvements in computational performance for tasks involving data-
array processing and computer modeling of complex processes and systems. The growing
demand for software performance in scientific computing, big-data analysis, artificial
intelligence, and machine learning emphasizes the importance of exploiting hardware-level
data parallelism. This study investigates the efficiency of automatic SIMD vectorization
provided by the Microsoft Visual C++ compiler in comparison with manual optimization
implemented through AV X2 instructions. To evaluate performance, three implementations
were developed: a scalar baseline version, a compiler-optimized automatic SIMD code, and
a manually vectorized SIMD version using intrinsic functions. Computational experiments
were conducted using the SAXPY operation for arrays sized from 105 to 10°. The results
demonstrated that automatic SIMD vectorization provides up to a 7.5x speedup with an
efficiency of 0.94 for small- and medium-scale problems, effectively utilizing processor re-
sources through aggressive optimizations such as loop unrolling and efficient use of FMA
pipelines Manual SIMD optimization showed stable acceleration of up to 3. for large arrays
but with lower efficiency (0.28-0.49 due to memory-bandwidth limitations and less
aggressive compiler-level transformations. The comparison revealed that automatic
methods are more convenient for developers, significantly reducing the effort required for
writing SIMD code, while manual optimizations remain relevant when scaling to large data
volumes. The findings indicate that the optimal strategy is a combined use of automatic and
manual SIMD transformations, allowing a balance between performance, accuracy, and
development effort, thus ensuring both efficiency and scalability of software solutions in
high-performance computing and computer modeling. Future research will focus on
expanding the experimental base across various processor architectures, analyzing the
interaction of SIMD vectorization with other compiler transformations, and applying ML-
based methods for adaptive optimization-strategy selection.

Keywords: automatic SIMD vectorization, manual SIMD optimization, AVX2, MSVC
compiler, high-performance computing.

Introduction. The rapid development of computing technology [1] and software has
significantly increased the requirements for software performance, particularly in scientific
computing, computer modeling, big-data analysis, and tasks related to artificial intelligence
(Al) and machine learning (ML) [2, 3]. Execution efficiency is critical for high-performance
computing (HPC), as well as for engineering and industrial systems, where computation speed
and result accuracy directly affect the quality of forecasts and decision-making processes [4].
For a long time, performance growth was achieved by reducing transistor sizes and
increasing processor clock frequencies. However, physical limitations rendered this approach
ineffective, leading to alternative solutions [1], such as multi-core architectures, parallel
computing, and the use of SIMD (Single Instruction, Multiple Data) hardware capabilities.
One of the key directions in improving performance is automatic compiler-based code
optimization, which improves execution performance without modifying the source code.
Modern compilers implement a wide range of optimizations, including vectorization, loop

43

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

unrolling and loop fusion, dead-code elimination, function inlining, constant propagation, and
others [5].

Special attention is given to SIMD vectorization, which enables efficient exploitation
of data-level parallelism (DLP) [6]. This approach allows a single instruction to be executed
simultaneously across an entire vector of elements, significantly accelerating array-based data
processing. Such methods are particularly relevant for modeling complex technological
processes and systems [4], as well as for numerical algorithms used in large-scale data
analysis and Al models.

Until recently, most SIMD optimizations were performed manually by programmers,
requiring deep knowledge of hardware architecture and being a labor-intensive process.
However, the advancement of modern compilers has gradually enabled automation of this
process, making it possible to compare the efficiency of manual and automatic SIMD
vectorization.

In this context, the present study focuses on analyzing modern approaches to

automatic SIMD vectorization by compilers and comparing them with the outcomes of
manual optimization in order to assess the advantages and limitations of both approaches.
This allows identification of development trends in code-optimization technologies and
directions for their further improvement.
Related works. Modern compilers perform multistage program transformations at different
representation levels (source — intermediate representation (IR) — machine code), applying a
set of optimization passes. The objective of these passes is to improve execution performance
and hardware-resource utilization without altering the program’s semantics. In recent years,
compiler developers have emphasized combining program data-flow analysis with processor
architectural features to automatically select and tune optimizations [7].

A particularly important direction involves optimizations aimed at exploiting DLP
parallelism [8, 9]. These include [5]: vectorization, SLP transformations (Superword-Level
Parallelism), loop unrolling/fusion, and related transformations that reduce the number of
instructions and improve the utilization of vector-register resources in modern CPUs (SSE,
AVX/IAVX2/AVX-512 for Intel, NEON for ARM architectures, etc.). The practical
effectiveness of such transformations depends on the accuracy of dependence analysis within
loops, the availability of memory-aliasing information, and support for a specific Instruction
Set Architecture (ISA) [10].

The assessment of compilers’ automatic vectorization capabilities is an active area of
research. In [5], a systematic methodology for evaluating auto-vectorizers was proposed,
demonstrating that the presence or absence of useful information in the code strongly affects
the results of auto-vectorization. Moreover, synthetic benchmarks (e.g., the Test Suite for
Vectorizing Compilers, TSVC) do not always capture the practical constraints of real-world
applications. This underlines the necessity of thorough testing and specialized approaches for
measuring compiler capabilities.

An important direction of development involves combining SIMD vectorization with
other compiler transformations, such as loop tiling (which improves cache locality and the
utilization efficiency of the memory hierarchy), software pipelining (which overlaps data
dependencies and balances instruction pipeline utilization), and memory-access optimizations
aimed at reducing latency and avoiding memory-bank conflicts. As shown in [11], the
integrated application of these approaches enables performance levels approaching those of
manual optimization, confirming the potential of multilevel strategies for program-code
optimization.

Recent studies increasingly focus on the application of ML methods for selecting
optimization passes. In [12], an ML model was proposed that predicts the suitability of
vectorization and other optimizations based on code characteristics, allowing compilers to
dynamically adapt their strategies. This opens new opportunities for creating «intelligent

44

[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJIEJITFOBAHHI = 2026 = Tom 16, Ne 1

compilers», capable of learning from examples and accounting for both code properties and
hardware features.

Although modern compilers implement multistage optimization passes and achieve
significant acceleration in many cases, the literature review identifies a number of systemic
limitations that substantially affect the effectiveness of automatic transformations.

For instance, automatic vectorization is effective for regular access patterns, such as
linear matrix indices. However, complex address expressions, indirect indexing through
arrays, or branches within loops limit the compiler’s ability to generate efficient vector code
[13]. Preliminary data transformations (e.g., tiling, data-layout adjustments) are often
required, complicating automation.

The generation of efficient code also depends on the specific hardware architecture,
including vector width, instruction set, and support for predication. Optimizations designed
for the AV X2 architecture may not deliver performance gains on platforms with ARM SVE,
and vice versa. This complicates the creation of universal auto-vectorizers, since each
architecture has unique characteristics that influence vectorization efficiency [14].

Finding the optimal combination of passes and compiler parameter settings
considerably increases compilation time. In ML-based approaches, additional offline training
of models is required to predict the usefulness of optimization passes. This increases build
time and necessitates a trade-off between code quality and compilation cost, especially in
industrial workflows [7].

While ML-based methods for compiler optimization-pass selection show promising
results, the main challenge lies in the need for large training datasets, which may be difficult
to obtain in specific domains or for new architectures. Furthermore, ML models may have
limited generalization ability to unseen programs, reducing their effectiveness in real-world
scenarios. The lack of transparency in decision-making (explainability) within complex ML
models further complicates their integration into industrial compilers, as predicting and
controlling their behavior across different scenarios becomes difficult. These factors increase
the risk of overfitting, where a model performs well on training data but fails to efficiently
handle new or unexpected inputs. Thus, although ML approaches promise improved
optimization efficiency, their application requires careful dataset collection, model tuning, and
ensuring transparency of decisions [15].

All optimization transformations must preserve program semantics. Aggressive

transformations, such as memory-access reordering or speculative vectorization, may require
additional control mechanisms — including memory fences or runtime assertions — to prevent
correctness violations. However, introducing such safeguards can reduce runtime performance
and partially offset the benefits of automatic optimizations [16].
Research Objective. Computational efficiency in computer-modeling tasks largely depends
on the use of SIMD instructions, which enable data-level parallelism in array processing. The
traditional approach of manual vectorization (explicit SIMD) ensures a high degree of control
but requires considerable time investment and architectural expertise. In contrast, modern
compilers — particularly Microsoft Visual Studio C++ (MSVC) — implement automatic
vectorization (implicit SIMD), which can significantly reduce development effort.

The purpose of this study is to investigate the efficiency of automatic SIMD

vectorization in modern compilers using MSVC as a case study and to compare it with
manual code optimization. The work aims to identify the advantages and limitations of
automatic and manual optimization strategies, as well as to develop practical
recommendations for improving program performance in high-performance computing,
particularly in the computer modeling of complex processes and systems.
Main Part. Vectorization is the process of transforming sequential scalar instructions into
vector instructions, which — unlike multithreading models — implements data-level parallelism
(DLP) within a single processor core. This allows a single instruction to be executed over
multiple elements simultaneously, using SIMD instructions as the hardware foundation.

45

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

Modern processors support SIMD through the following extensions [17]: SSE
(Streaming SIMD Extensions) — 128 bit, AVX/AVX2 (Advanced Vector Extensions) — 256
bit, AVX-512 — 512 bit, ARM NEON, and SVE (Scalable Vector Extension).

Theoretical acceleration (Smax) depends on the ratio of the vector-register width to the
size of the data element (Wreg / Welem). For example, for AV X2 with 32-bit elements, up to
eight operations can be performed per clock cycle.

Two approaches to SIMD are distinguished: explicit vectorization (explicit SIMD) —
using intrinsic functions and inline assembly — and automatic vectorization (implicit SIMD,
auto-vectorization), in which the compiler automatically analyzes and transforms the
appropriate code into vectorized instructions without changes to the program source text.
Explicit vectorization ensures full control but requires deep knowledge of the Instruction Set
Architecture (ISA) and reduces code portability. The advantage of automatic vectorization is
reduced development effort; however, its efficiency depends on dependence analysis
algorithms and support for the specific hardware architecture.

The conditions for effective vectorization include regular memory access, the absence
of loop-carried dependencies, proper data alignment, and correct pointer handling (alias
analysis).

The primary performance metrics are execution time (t), speedup (S), and acceleration
efficiency (E, 0 < E <1):

S =Ty /Tvec '

E=S/Smux
where Tscal, Tvec — are the execution times of the scalar (non-vectorized) and vectorized
versions, respectively.

Most modern compilers implement multi-level optimization — from high-level
transformation (source — IR) to machine-code generation. Vectorization is a component of
loop optimizations and machine-dependent optimizations.

GCC supports auto-vectorization at optimization level -O3 and with options such as -
ftree-vectorize and -funroll-loops. It also has good integration with OpenMP SIMD.

Clang/LLVM provides a Loop Vectorizer and an SLP Vectorizer and is oriented
toward flexible tuning. It is widely used in scientific computing projects and Al frameworks.

Intel ICC/ICX is regarded as a reference standard for high-performance computing,
offering advanced heuristics for dependence analysis and optimized generation of
AVX/AVX-512 instructions.

MSVC supports auto-vectorization for loops when using the /O2 or /Ox. optimization
flags. Built-in intrinsic functions in <immintrin.h> allow for explicit SIMD implementation.

Starting with C++17, MSVC also integrates parallel STL algorithms (Parallel Patterns
Library), which combine multithreading with vectorization. This represents a higher level of
automation, relying not only on the compiler’s internal optimization mechanisms but also on
library-level abstractions.

In MSVC, vectorization is implemented based on loop analysis in an SSA-style
intermediate representation (IR). The algorithm checks for loop-iteration independence, the
feasibility of applying predication to conditional branches, the regularity of array indexing,
and proper memory-access alignment. If alignment cannot be guaranteed, the compiler inserts
so-called «safe loads» to ensure correctness.

MSVC applies a combination of strip-mining and vectorization — splitting the loop
into a «vector» part and a «remainder» (tail) executed in scalar mode. This ensures
correctness even for arrays whose length is not a multiple of the vector width. A distinctive
feature of MSVC is its integration of the auto-vectorizer with the Profile-Guided Optimization
(PGO) system: during preliminary program runs, execution statistics are collected, allowing
the compiler to more accurately select loops for vectorization.

To evaluate the efficiency of compiler auto-vectorization and manual SIMD
optimization, three groups of tests were implemented:

46

[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJIEJITFOBAHHI = 2026 = Tom 16, Ne 1

1) a scalar baseline implementation of array-processing algorithms;

2) an automatically optimized implementation compiled with the /O2 and /Ox,
optimization flags that activate MSVC’s auto-vectorizer;

3) a manual SIMD implementation, where the same algorithms were vectorized using
AV X2 instructions from the <immintrin.h> library.

As an example, the SAXPY operation (Single-Precision AxX Plus Y) was computed:

Y, =oX + VY, 1=1...,N,
where N is the array size, o — a constant, X, y — are vectors.
In the scalar baseline version (C++):
for (int i = 0; 1 < N; ++1i) y[i] = a * x[1i] + y[i];

The loop contains a simple linear indexing pattern, no conditional branches, and
regular memory access, making it suitable for automatic SIMD vectorization.

When applying automatic optimization, the Microsoft Visual C++ compiler transforms
the scalar loop into a vectorized loop using AVX2 SIMD instructions. The basic approach
involves loading eight float elements into a 256-bit YMM register and performing
multiplication and addition in vectorized form.

However, in practical implementations within the MSVC IDE, the compiler applies a
more aggressive strategy — loop unrolling and scheduling multiple vector blocks per iteration.
This means that, instead of processing only eight elements at a time, MSVC simultaneously
processes several groups of eight elements, distributing them across different YMM registers
(e.g9.,, ymml, ymm2, ymm3, etc.). Such an approach reduces loop-control overhead,
maximally loads processor pipelines capable of executing several SIMD operations in
parallel, and more effectively exploits FMA (fused multiply-add) instructions, which combine
multiplication and addition in a single cycle.

Thus, automatically generated MSVC code not only vectorizes computations but also
applies advanced optimizations at both the memory and instruction-flow levels. This approach
can be characterized as an aggressive SIMD-vectorization strategy.

SIMD version (AVX2):

1 __m256 avx_a = _mm256_setl ps(a);

2 int 1i;

3 for (i =0; i +7 < N; i+=28) // vector loop

4 {

5 _ _m256 avx_x = _mm256_ loadu ps(&x[i]);

6 __m256 avx_y = _mm256_loadu_ps(&y[i]);

7 avx_y = _mm256_fmadd ps(avx_a, avx_X, avx_y);

8 _mm256_storeu_ps(&y[i], avx_ y);

9 }

10 for (; i < N; ++1) y[i] = a * x[i] + y[i]; // tail loop

In this implementation, vectorization of computations is carried out using AVX2
SIMD intrinsics from Intel. A 256-bit vector type __m256 s employed, corresponding to the
hardware YMM registers of the Intel architecture [18, 19]. Each YMM register can hold eight
single-precision floating-point numbers (float), enabling the simultaneous processing of eight
elements of a float array within a single instruction.

At the beginning, a broadcast operation is performed using _mm256_setl ps(a)
(line 1), which loads the scalar coefficient a into all eight positions of the vector register
avx_a. Next, the vectorized loop (lines 3-9) is executed: _mm256 loadu_ps(&x[i]) and
_mm256_loadu_ps(&y[i]) (lines 5 and 6, respectively) load contiguous subarrays of x and y
into YMM registers. The instruction _mm256_fmadd_ps(avx_a, avx_x, avx_y) implements
the fused multiply-add (FMA) operation (line 7), which is executed in hardware without
intermediate storage of the product, thereby reducing execution overhead and improving
computational accuracy. The result is stored back into memory using _mm256_storeu_ps
(line 8).

47

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

Since the array length N may not be a multiple of the vector register size (eight
elements), a tail loop is used to process the remainder with scalar instructions. This guarantees
correctness for any input size. The same principle is applied in automatic compiler
optimization.

The presented code illustrates a typical SIMD-programming structure, where vector
processing of the main data portion using YMM registers is combined with a tail section for
residual elements. Such an approach efficiently exploits hardware-level data-parallelism
(DLP) while maintaining universal applicability.

Thus, manual SIMD code is optimal in terms of the «purity» and simplicity of SIMD,
but it does not exploit the potential of loop unrolling. By contrast, MSVC auto-vectorization
generates more complex yet more aggressive code, capable of delivering higher performance
on modern CPUs thanks to loop unrolling and maximized utilization of FMA pipelines.
Results and Discussion. The experiments were conducted on a laptop equipped with a 12th
Gen Intel Core i5-12500H 2.50 GHz processor (12 cores / 16 threads), 16 GB of DDR4-3200
MHz RAM, running Microsoft Windows 10. Program development and compilation were
performed in MSVC 2022, targeting the 64-bit (x64) architecture with SIMD AVX2
extensions enabled. Execution time was measured using the standard clock() function from
the <time.h> library.

The program was implemented in MSVC with the following settings:

— Enable Enhanced Instruction Set = Advanced Vector Extensions 2 (x86/x64)
(/arch:AVX2);

— Floating Point Model = Fast (/fp:fast)

Analysis of the obtained results (Table 1) reveals significant differences between
scalar execution, manual SIMD vectorization, and compiler auto-optimization. The execution
time in the scalar version grows nearly linearly with increasing problem size, reaching 4.493
seconds for N =10° (Fig. 1). This is expected, since the absence of data-level parallelism
limits performance to sequential execution of instructions.

Table 1.
Performance metrics of computational implementations
1.0x10° 1.0x108 1.0x107 1.0x108 1.0x10°
Tscal 0.000121 0.00135 0.01445 0.10685 4.493
Tvec 0.000046 0.00049 0.00656 0.04635 1.157
Tauto 0.000016 0.00035 0.00433 0.04599 0.855
Svec 2.61 2.76 2.20 2.31 3.88
Sauto 7.50 3.92 3.34 2.32 5.25
Evec 0.33 0.34 0.28 0.29 0.49
Eauto 0.94 0.49 0.41 0.29 0.66
5.0000

. 1.0000 —+—No-AVX

e = AVX2-float

g02000 __ oo

= 0.0400

2 0.0080

£ 0.0016

£ 0.0003

“ 0.0001

0.0000

1E+05 1E+06 1E+07 1E+08 1E+09
r‘\"

Fig. 1. Execution-time dependence on problem size
Manual SIMD vectorization provides substantial acceleration. For N = 10°, execution

time is reduced almost fourfold compared to the baseline scalar version. The corresponding
speedup ranges from 2.2 to 3.88 depending on the problem size (Fig. 2). At the same time,

48

[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJIEJITFOBAHHI = 2026 = Tom 16, Ne 1

hardware-utilization efficiency remains in the range of 0.28-0.49, indicating incomplete
loading of vector registers and potential performance losses due to irregular memory access or

synchronization overheads.
8.0

= Svec ™ Sauto
6.0
4.0
‘dddn
0.0

1E+05 1E+06 1E+07 1E+08 1E+09
N

Acceleration

Fig. 2. Comparison of manual and automatic vectorization performance

Compiler auto-optimization demonstrates even higher performance for small and
medium problem sizes. For N = 10°, a maximum speedup of 7.5x is achieved with efficiency
of 0.94, which is close to the theoretical limit (Fig. 3). However, as data size increases,
efficiency decreases. For instance, at N = 102 it drops to only 0.29, which can be attributed to
memory-bandwidth limitations and the influence of data-layout organization on the
performance of vector computations.

1.0

—e—Evec =—e=Eauto
0.8
0.6
0.4

0.2

Acceleration efficiency

1E+05 1E+06 1E+07 1E+08 1E+09
%
Fig. 3. Comparison of SIMD-resource-utilization efficiency

The results indicate that automatic SIMD vectorization in modern compilers can
deliver performance comparable to or even exceeding manual optimization, particularly for
small- and medium-sized tasks. At the same time, when scaling to larger datasets, the
advantages of manual optimization become more evident due to its ability to better account
for memory-organization specifics and to fine-tune loop parameters. These findings confirm
the necessity of a combined approach, integrating automatic optimization with selective
manual SIMD techniques in performance-critical code sections.

Conclusions. This study analyzed the efficiency of automatic and manual SIMD vectorization
for array-processing tasks in the MSVC environment using AV X2 extension instructions.

Automatic vectorization in modern compilers demonstrates a high level of
performance, particularly for small- and medium-scale tasks. The achieved speedup of up to
7.5x with an efficiency of 0.94 highlights MSVC’s ability to fully utilize processor SIMD
resources through aggressive optimizations, including loop unrolling and the effective use of
FMA pipelines.

Manual SIMD optimization provides stable performance gains when scaling to larger
problem sizes, achieving up to 3.88x acceleration for large arrays. However, its efficiency
remains lower (0.28-0.49) due to memory-bandwidth limitations and the less aggressive
nature of the transformations compared to automatic compiler optimizations.

The optimal strategy for high-performance applications is a combined use of
automatic and manual SIMD optimization methods, which enables a balance between

49

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

performance and development effort, while ensuring the scalability of software solutions in
computational modeling of complex processes and systems.

Future research directions include expanding the experimental base to cover various

processor architectures (Intel, AMD, ARM), analyzing the interaction of SIMD vectorization
with other compiler transformations, and applying ML-based methods for the adaptive
selection of optimization strategies in HPC and computational modeling tasks.

1.

10.

11.

12.

13.

50

References
Hennessy J.L., Patterson D.A. A New Golden Age for Computer Architecture.
Communications of the ACM. 2019. Vol. 62, Ne2. P. 48-60. DOI:
https://doi.org/10.1145/3282307
Bouras M., Idrissi A. A Survey of Parallel Computing: Challenges, Methods and
Directions. Modern Artificial Intelligence and Data Science. Studies in Computational
Intelligence. 2023. Vol. 102. P. 67-81. DOI: https://doi.org/10.1007/978-3-031-33309-
56
Imbert C. Computer Simulations and Computational Models in Science. In: Springer
Handbook of Model-Based Science. Springer Handbooks. Cham: Springer, 2017. P. 735—
781. DOI: https://doi.org/10.1007/978-3-319-30526-4 34
Zhulkovskii O., Panteikov S., Zhulkovskaya I. Information-Modeling Forecasting System
for Thermal Mode of Top Converter Lance. Steel in Translation. 2022. Vol. 52, Ne5. P.
495-502. DOI: https://doi.org/10.3103/s0967091222050138
Siso S., Armour W., Thiyagalingam J. Evaluating Auto-Vectorizing Compilers Through
Objective Withdrawal of Useful Information. ACM Transactions on Architecture and
Code Optimization. 2019. Vol. 16, No.4. Article 40. P. 1-23.
https://doi.org/10.1145/3356842
Zheng R., Pai S. Efficient Execution of Graph Algorithms on CPU with SIMD
Extensions. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 2021. P. 262-276. DOI:
https://doi.org/10.1109/CG051591.2021.9370326
Haj Ali A. Machine Learning in Compiler Optimization. Berkeley: EECS Department,
University of California, 2021. URL:
http://lwww2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-2.html
Zhulkovskyi O., Zhulkovska I., Vokhmianin H., et al. Application of SIMD-Instructions
to Increase the Efficiency of Numerical Methods for Solving SLAE. Computer Systems
and Information Technologies. 2024. No.4. P. 126-133. DOl:
https://doi.org/10.31891/csit-2024-4-15
Zhulkovskyi O.0., Vokhmianin H.Ya., Zhulkovska I.I., et al. Acceleration of Image
Processing Algorithms Using SIMD Technology. Informatics and Mathematical Methods
in Simulation. 2025. Vol. 15, Nel. P. 15-23. DOI: https://doi.org/10.15276/imms.V15.
Vol.15
Feng J., He Y., Tao Q. Evaluation of Compilers’ Capability of Automatic Vectorization
Based on Source Code Analysis. Scientific Programming. 2021. P. 1-15. DOI:
https://doi.org/10.1155/2021/3264624
Aleen F., Zakharin V.P., Krishnaiyer R., et al. Automated Compiler Optimization of
Multiple Vector Loads/Stores. International Journal of Parallel Programming. 2018.
Vol. 46. P. 471-503. DOI: https://doi.org/10.1007/s10766-016-0485-7
Ashouri A.H., Killian W., Cavazos J., et al. A Survey on Compiler Autotuning Using
Machine Learning. ACM Computing Surveys. 2018. Vol. 51, Ne5. Article 96. P. 1-42,
DOI: https://doi.org/10.1145/3197978
Cho D., Pasricha S., Issenin 1., et al. Compiler Driven Data Layout Optimization for
Regular/Irregular Array Access Patterns. ACM SIGPLAN Notices. 2008. Vol. 43, Ne7. P.
41-50. https://doi.org/10.1145/1379023.1375664

[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJIEJITFOBAHHI = 2026 = Tom 16, Ne 1

14.

15.

16.

17.

Sakib N., Prabhu T., Santhi N., et al. Comparison of Vectorization Capabilities of
Different Compilers for x86 and ARM CPUs. arXiv. 2025. DOI:
https://doi.org/10.48550/arXiv.2502.11906

Wang Z., O’Boyle M. Machine Learning in Compiler Optimization. In: Proceedings of
the IEEE. 2018. Vol. 106, Nell. P. 1879-1901. DOI:
https://doi.org/10.1109/JPROC.2018.2817118

Vu S.T., Heydemann K., de Grandmaison A., Cohen A. Secure Delivery of Program
Properties Through Optimizing Compilation. In: Proceedings of the 29th International
Conference on Compiler Construction (CC 2020). 2020. P. 14-26. DOL:
https://doi.org/10.1145/3377555.3377897

Wang J., Yu L., Zhuang W., Yang X., Zhang S., Qin Z. Research on Vector Extension of
Instruction Set Architecture. In: 2024 3rd International Conference on Cloud Computing,
Big Data Application and Software Engineering (CBASE). Hangzhou, China, 2024. P.

378-385. DOI: https://doi.org/10.1109/CBASE64041.2024.10824427

18. Van Hoey J. AVX. In: Beginning x64 Assembly Programming. Berkeley, CA: Apress,
2019. P. 307-315. https://doi.org/10.1007/978-1-4842-5076-1_35

19. Intel Intrinsics Guide. Intel. URL:
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

MMPOBJIEMH ABTOMATHYHOI ONTUMI3AIIIL
INPOI'PAMHOI'O KOAY KOMIIIVIATOPOM

LL }KyJILKOBCLKal, 0.0. }KyanOBCLKHﬁl,

T.M. Pynsnosa?, 0.10. J1e6inp?, M.®. Mopmyis?

U Ininposchkuii nepxaBHuil TeXHIUHM yHiBEPCUTET
2, ninpoOyniBcbka Byil., Kam’sHebke, 51918, Ykpaina
Y HiBepCHTET MUTHOI CIIpaBH Ta (iHAHCIB
2/4, Bonoaumupa Bepuaacekoro By, J{Hinpo, 49000, Ykpaina
Email: olalzh@ukr.net

PamionanpHe BHUKOPHCTAHHS MOMIIMBOCTEH CYYaCHHX KOMIIUIATOPIB, 30Kpema aBToMarmyHoi SIMD-
BEKTOPH3AIlil, J03BOJISIE€ 3HAYHO MiABUITUTHA HMPOTYyKTHBHICTH OOYUCICHD Y 3a/1a9aX 0OpOOKH MacHBIB JaHUX,
KOMIT FOTEPHOTO MOJEIOBAaHHS CKJIaJHUX TIIPOLECIB Ta CHUCTEM. 3POCTaHHS BHMOT JI0 IPOXYKTUBHOCTI
MPOTPAMHOTO 3a0€3MeUYCeHHS Y HAYKOBUX OOYHCIICHHSX, aHAI31 BEJIMKUAX MAHKX, 3a/1a4aX MITyYHOTO IHTEICKTY
Ta MalIMHHOT'O HaBYaHHs POOUTH aKTyaJIbHUM BUKOPUCTAHHS allapaTHOTO Tapajesi3My Ha piBHI JaHUX.

VY poboTi gocmipKyeThes eekTHBHICTS aBToMaTHuHOI SIMD-Bekropu3altii komminstopoMm Microsoft Visual
C++ y moOpiBHSHHI 3 pPy4YHOI ONTHUMI3ali€r0, MO peanidyeTbesi uepe3 AVX2-incrpykuii. ust OIiHKH
NPOJYKTUBHOCTI Oynu po3poOieHi Tpu pearnizanii OOYHCICHB: CKaJisipHa 0a30Ba BEpCis, aBTOMATHYHO
ONTHMI30BaHUI KOJ KOMHUIsATOpa, a Takok pyuHa SIMD-Bepcist i3 3actocyBaHHsM intrinsic-hyHKIi.
O6uKCII0BalIbHI eKCIIEPUMEHTH IPOBEEHO Ha mpukiasi onepauii SAXPY nms macusis posmipom 10%-10°.
Pesymbratm mokazamm, mo aBromatuuHa SIMD-BekTOopm3amis 3a0e3medye TPUCKOPEHHS 10 7.5X i3
edexrusHicTio 0.94 1751 3amau Manoi Ta cepeqHbOI PO3MIPHOCTI, MAKCHMAIBHO BHKOPHCTOBYIOUHM PECypcH
npolecopa 3aBIsIKH arpeCUBHAM ONTHUMI3aLlisiM, TAKAM SIK PO3TOPTAHHS LUKJIIB Ta e€(EeKTHBHE BUKOPUCTAHHS
FMA-konBeepiB. Pygna SIMD-ontuMizanist 7eMOHCTpye CTaOUIbHE NPHCKOpPeHHs 10 3.88X Uil BEIMKHX
MacuBiB, npote 3 HIK40I0 edektuBHicTIO (0.28—0.49) yepe3 oOMEKEHHSI MPOITYCKHOI 3/aTHOCTI mamM’sITi Ta
MEHIIIy arpecuBHICTh TpaHchopmariit. [TopiBHSAHHS MOKa3aio0, M0 aBTOMATUYHI METOAU € OUIbII 3pyIHUMHU
JUIA po3pOOHHKA, TO3BOJISIIOYN 3HAYHO 3MEHIIUTH TPyAOMicTKicTh HamucanHi SIMD-kony. BoxHouac pyuHi
ONTUMI3aIli]l 3aJUIIAIOTECS aKTyaJbHUMH IPH MacIITa0yBaHHI 3a7jad Ha BENHKi oOcarm naHuWx. PesymeraTtn
pobOTH CBi4ATh, IO ONTHUMAJIBHOIO CTPATETIEI0 € KOMOIHOBaHE 3aCTOCYBaHHS AaBTOMAaTHYHUX 1 PYYHHX
SIMD-tpancdopmariiii, 1m0 M03BOJSAE TOCATTH OagaHCy MK NPOAYKTHBHICTIO, TOYHICTIO Ta 3PYYHICTIO
po3poOku, 3abe3medyrodn epeKTHBHICTh 1 MacmTabOBaHICTh MPOTPAMHUX PIlIEHh y BHUCOKONPOIYKTHBHHX
O0YMCIIEHHSIX 1 KOMIT'FOTEpHOMY MoJeNoBaHHl. [lepcrekTHBM MOJanbIIMX JOCII/DKEHb IIOB’s3aHI 3
PO3LIMPEHHAM EKCIepUMEHTAIFHOT 0a3M Ha pi3HI apXiTeKTypH NpolecopiB, aHamizom B3aemonii SIMD-
BEKTOpW3alii 3 IHIIMUMH KOMITUIITOPDHUMH TpaHC(OpMallisiMi Ta 3actocyBaHHsM ML-meronis uis
a/IalITUBHOTO BUOOPY ONTHMI3aIlifHUX CTPATETIH.

51

