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Rational use of modern compiler capabilities, in particular automatic SIMD vectorization, 

enables significant improvements in computational performance for tasks involving data-

array processing and computer modeling of complex processes and systems. The growing 

demand for software performance in scientific computing, big-data analysis, artificial 

intelligence, and machine learning emphasizes the importance of exploiting hardware-level 

data parallelism. This study investigates the efficiency of automatic SIMD vectorization 

provided by the Microsoft Visual C++ compiler in comparison with manual optimization 

implemented through AVX2 instructions. To evaluate performance, three implementations 

were developed: a scalar baseline version, a compiler-optimized automatic SIMD code, and 

a manually vectorized SIMD version using intrinsic functions. Computational experiments 

were conducted using the SAXPY operation for arrays sized from 105 to 109. The results 

demonstrated that automatic SIMD vectorization provides up to a 7.5x speedup with an 

efficiency of 0.94 for small- and medium-scale problems, effectively utilizing processor re-

sources through aggressive optimizations such as loop unrolling and efficient use of FMA 

pipelines Manual SIMD optimization showed stable acceleration of up to 3. for large arrays 

but with lower efficiency (0.28–0.49 due to memory-bandwidth limitations and less 

aggressive compiler-level transformations. The comparison revealed that automatic 

methods are more convenient for developers, significantly reducing the effort required for 

writing SIMD code, while manual optimizations remain relevant when scaling to large data 

volumes. The findings indicate that the optimal strategy is a combined use of automatic and 

manual SIMD transformations, allowing a balance between performance, accuracy, and 

development effort, thus ensuring both efficiency and scalability of software solutions in 

high-performance computing and computer modeling. Future research will focus on 

expanding the experimental base across various processor architectures, analyzing the 

interaction of SIMD vectorization with other compiler transformations, and applying ML-

based methods for adaptive optimization-strategy selection. 

Keywords: automatic SIMD vectorization, manual SIMD optimization, AVX2, MSVC 

compiler, high-performance computing. 

 

Introduction. The rapid development of computing technology [1] and software has 

significantly increased the requirements for software performance, particularly in scientific 

computing, computer modeling, big-data analysis, and tasks related to artificial intelligence 

(AI) and machine learning (ML) [2, 3]. Execution efficiency is critical for high-performance 

computing (HPC), as well as for engineering and industrial systems, where computation speed 

and result accuracy directly affect the quality of forecasts and decision-making processes [4]. 

For a long time, performance growth was achieved by reducing transistor sizes and 

increasing processor clock frequencies. However, physical limitations rendered this approach 

ineffective, leading to alternative solutions [1], such as multi-core architectures, parallel 

computing, and the use of SIMD (Single Instruction, Multiple Data) hardware capabilities. 

One of the key directions in improving performance is automatic compiler-based code 

optimization, which improves execution performance without modifying the source code. 

Modern compilers implement a wide range of optimizations, including vectorization, loop 
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unrolling and loop fusion, dead-code elimination, function inlining, constant propagation, and 

others [5]. 

Special attention is given to SIMD vectorization, which enables efficient exploitation 

of data-level parallelism (DLP) [6]. This approach allows a single instruction to be executed 

simultaneously across an entire vector of elements, significantly accelerating array-based data 

processing. Such methods are particularly relevant for modeling complex technological 

processes and systems [4], as well as for numerical algorithms used in large-scale data 

analysis and AI models. 

Until recently, most SIMD optimizations were performed manually by programmers, 

requiring deep knowledge of hardware architecture and being a labor-intensive process. 

However, the advancement of modern compilers has gradually enabled automation of this 

process, making it possible to compare the efficiency of manual and automatic SIMD 

vectorization. 

In this context, the present study focuses on analyzing modern approaches to 

automatic SIMD vectorization by compilers and comparing them with the outcomes of 

manual optimization in order to assess the advantages and limitations of both approaches. 

This allows identification of development trends in code-optimization technologies and 

directions for their further improvement. 

Related works. Modern compilers perform multistage program transformations at different 

representation levels (source – intermediate representation (IR) – machine code), applying a 

set of optimization passes. The objective of these passes is to improve execution performance 

and hardware-resource utilization without altering the program’s semantics. In recent years, 

compiler developers have emphasized combining program data-flow analysis with processor 

architectural features to automatically select and tune optimizations [7]. 

A particularly important direction involves optimizations aimed at exploiting DLP 

parallelism [8, 9]. These include [5]: vectorization, SLP transformations (Superword-Level 

Parallelism), loop unrolling/fusion, and related transformations that reduce the number of 

instructions and improve the utilization of vector-register resources in modern CPUs (SSE, 

AVX/AVX2/AVX-512 for Intel, NEON for ARM architectures, etc.). The practical 

effectiveness of such transformations depends on the accuracy of dependence analysis within 

loops, the availability of memory-aliasing information, and support for a specific Instruction 

Set Architecture (ISA) [10]. 

The assessment of compilers’ automatic vectorization capabilities is an active area of 

research. In [5], a systematic methodology for evaluating auto-vectorizers was proposed, 

demonstrating that the presence or absence of useful information in the code strongly affects 

the results of auto-vectorization. Moreover, synthetic benchmarks (e.g., the Test Suite for 

Vectorizing Compilers, TSVC) do not always capture the practical constraints of real-world 

applications. This underlines the necessity of thorough testing and specialized approaches for 

measuring compiler capabilities. 

An important direction of development involves combining SIMD vectorization with 

other compiler transformations, such as loop tiling (which improves cache locality and the 

utilization efficiency of the memory hierarchy), software pipelining (which overlaps data 

dependencies and balances instruction pipeline utilization), and memory-access optimizations 

aimed at reducing latency and avoiding memory-bank conflicts. As shown in [11], the 

integrated application of these approaches enables performance levels approaching those of 

manual optimization, confirming the potential of multilevel strategies for program-code 

optimization. 

Recent studies increasingly focus on the application of ML methods for selecting 

optimization passes. In [12], an ML model was proposed that predicts the suitability of 

vectorization and other optimizations based on code characteristics, allowing compilers to 

dynamically adapt their strategies. This opens new opportunities for creating «intelligent 
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compilers», capable of learning from examples and accounting for both code properties and 

hardware features. 

Although modern compilers implement multistage optimization passes and achieve 

significant acceleration in many cases, the literature review identifies a number of systemic 

limitations that substantially affect the effectiveness of automatic transformations. 

For instance, automatic vectorization is effective for regular access patterns, such as 

linear matrix indices. However, complex address expressions, indirect indexing through 

arrays, or branches within loops limit the compiler’s ability to generate efficient vector code 

[13]. Preliminary data transformations (e.g., tiling, data-layout adjustments) are often 

required, complicating automation. 

The generation of efficient code also depends on the specific hardware architecture, 

including vector width, instruction set, and support for predication. Optimizations designed 

for the AVX2 architecture may not deliver performance gains on platforms with ARM SVE, 

and vice versa. This complicates the creation of universal auto-vectorizers, since each 

architecture has unique characteristics that influence vectorization efficiency [14]. 

Finding the optimal combination of passes and compiler parameter settings 

considerably increases compilation time. In ML-based approaches, additional offline training 

of models is required to predict the usefulness of optimization passes. This increases build 

time and necessitates a trade-off between code quality and compilation cost, especially in 

industrial workflows [7]. 

While ML-based methods for compiler optimization-pass selection show promising 

results, the main challenge lies in the need for large training datasets, which may be difficult 

to obtain in specific domains or for new architectures. Furthermore, ML models may have 

limited generalization ability to unseen programs, reducing their effectiveness in real-world 

scenarios. The lack of transparency in decision-making (explainability) within complex ML 

models further complicates their integration into industrial compilers, as predicting and 

controlling their behavior across different scenarios becomes difficult. These factors increase 

the risk of overfitting, where a model performs well on training data but fails to efficiently 

handle new or unexpected inputs. Thus, although ML approaches promise improved 

optimization efficiency, their application requires careful dataset collection, model tuning, and 

ensuring transparency of decisions [15]. 

All optimization transformations must preserve program semantics. Aggressive 

transformations, such as memory-access reordering or speculative vectorization, may require 

additional control mechanisms – including memory fences or runtime assertions – to prevent 

correctness violations. However, introducing such safeguards can reduce runtime performance 

and partially offset the benefits of automatic optimizations [16]. 

Research Objective. Computational efficiency in computer-modeling tasks largely depends 

on the use of SIMD instructions, which enable data-level parallelism in array processing. The 

traditional approach of manual vectorization (explicit SIMD) ensures a high degree of control 

but requires considerable time investment and architectural expertise. In contrast, modern 

compilers – particularly Microsoft Visual Studio C++ (MSVC) – implement automatic 

vectorization (implicit SIMD), which can significantly reduce development effort. 

The purpose of this study is to investigate the efficiency of automatic SIMD 

vectorization in modern compilers using MSVC as a case study and to compare it with 

manual code optimization. The work aims to identify the advantages and limitations of 

automatic and manual optimization strategies, as well as to develop practical 

recommendations for improving program performance in high-performance computing, 

particularly in the computer modeling of complex processes and systems. 

Main Part. Vectorization is the process of transforming sequential scalar instructions into 

vector instructions, which – unlike multithreading models – implements data-level parallelism 

(DLP) within a single processor core. This allows a single instruction to be executed over 

multiple elements simultaneously, using SIMD instructions as the hardware foundation. 
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Modern processors support SIMD through the following extensions [17]: SSE 

(Streaming SIMD Extensions) – 128 bit, AVX/AVX2 (Advanced Vector Extensions) – 256 

bit, AVX-512 – 512 bit, ARM NEON, and SVE (Scalable Vector Extension). 

Theoretical acceleration (Smax) depends on the ratio of the vector-register width to the 

size of the data element (Wreg / Welem). For example, for AVX2 with 32-bit elements, up to 

eight operations can be performed per clock cycle. 

Two approaches to SIMD are distinguished: explicit vectorization (explicit SIMD) – 

using intrinsic functions and inline assembly – and automatic vectorization (implicit SIMD, 

auto-vectorization), in which the compiler automatically analyzes and transforms the 

appropriate code into vectorized instructions without changes to the program source text. 

Explicit vectorization ensures full control but requires deep knowledge of the Instruction Set 

Architecture (ISA) and reduces code portability. The advantage of automatic vectorization is 

reduced development effort; however, its efficiency depends on dependence analysis 

algorithms and support for the specific hardware architecture. 

The conditions for effective vectorization include regular memory access, the absence 

of loop-carried dependencies, proper data alignment, and correct pointer handling (alias 

analysis). 

The primary performance metrics are execution time (τ), speedup (S), and acceleration 

efficiency (E, 0  E ≤ 1): 

vecscal S , 

maxSSE  , 

where τscal, τvec – are the execution times of the scalar (non-vectorized) and vectorized 

versions, respectively. 

Most modern compilers implement multi-level optimization – from high-level 

transformation (source – IR) to machine-code generation. Vectorization is a component of 

loop optimizations and machine-dependent optimizations. 

GCC supports auto-vectorization at optimization level -O3 and with options such as -

ftree-vectorize and -funroll-loops. It also has good integration with OpenMP SIMD. 

Clang/LLVM provides a Loop Vectorizer and an SLP Vectorizer and is oriented 

toward flexible tuning. It is widely used in scientific computing projects and AI frameworks. 

Intel ICC/ICX is regarded as a reference standard for high-performance computing, 

offering advanced heuristics for dependence analysis and optimized generation of 

AVX/AVX-512 instructions. 

MSVC supports auto-vectorization for loops when using the /O2 or /Ox. optimization 

flags. Built-in intrinsic functions in <immintrin.h> allow for explicit SIMD implementation.  

Starting with C++17, MSVC also integrates parallel STL algorithms (Parallel Patterns 

Library), which combine multithreading with vectorization. This represents a higher level of 

automation, relying not only on the compiler’s internal optimization mechanisms but also on 

library-level abstractions. 

In MSVC, vectorization is implemented based on loop analysis in an SSA-style 

intermediate representation (IR). The algorithm checks for loop-iteration independence, the 

feasibility of applying predication to conditional branches, the regularity of array indexing, 

and proper memory-access alignment. If alignment cannot be guaranteed, the compiler inserts 

so-called «safe loads» to ensure correctness. 

MSVC applies a combination of strip-mining and vectorization – splitting the loop 

into a «vector» part and a «remainder» (tail) executed in scalar mode. This ensures 

correctness even for arrays whose length is not a multiple of the vector width. A distinctive 

feature of MSVC is its integration of the auto-vectorizer with the Profile-Guided Optimization 

(PGO) system: during preliminary program runs, execution statistics are collected, allowing 

the compiler to more accurately select loops for vectorization. 

To evaluate the efficiency of compiler auto-vectorization and manual SIMD 

optimization, three groups of tests were implemented: 
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1) a scalar baseline implementation of array-processing algorithms; 

2) an automatically optimized implementation compiled with the /O2 and /Ox, 

optimization flags that activate MSVC’s auto-vectorizer; 

3) a manual SIMD implementation, where the same algorithms were vectorized using 

AVX2 instructions from the <immintrin.h> library. 

As an example, the SAXPY operation (Single-Precision A×X Plus Y) was computed: 

Niyxy iii ,...,1,  , 

where N is the array size, α – a constant, x, y – are vectors. 

In the scalar baseline version (C++): 

for (int i = 0; i < N; ++i) y[i] = a * x[i] + y[i]; 
The loop contains a simple linear indexing pattern, no conditional branches, and 

regular memory access, making it suitable for automatic SIMD vectorization.  

When applying automatic optimization, the Microsoft Visual C++ compiler transforms 

the scalar loop into a vectorized loop using AVX2 SIMD instructions. The basic approach 

involves loading eight float elements into a 256-bit YMM register and performing 

multiplication and addition in vectorized form.  

However, in practical implementations within the MSVC IDE, the compiler applies a 

more aggressive strategy – loop unrolling and scheduling multiple vector blocks per iteration. 

This means that, instead of processing only eight elements at a time, MSVC simultaneously 

processes several groups of eight elements, distributing them across different YMM registers 

(e.g., ymm1, ymm2, ymm3, etc.). Such an approach reduces loop-control overhead, 

maximally loads processor pipelines capable of executing several SIMD operations in 

parallel, and more effectively exploits FMA (fused multiply-add) instructions, which combine 

multiplication and addition in a single cycle. 

Thus, automatically generated MSVC code not only vectorizes computations but also 

applies advanced optimizations at both the memory and instruction-flow levels. This approach 

can be characterized as an aggressive SIMD-vectorization strategy. 

SIMD version (AVX2): 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

__m256 avx_a = _mm256_set1_ps(a); 
int i; 
for (i = 0; i + 7 < N; i += 8)  // vector loop 
{ 
    __m256 avx_x = _mm256_loadu_ps(&x[i]); 
    __m256 avx_y = _mm256_loadu_ps(&y[i]); 
    avx_y = _mm256_fmadd_ps(avx_a, avx_x, avx_y); 
    _mm256_storeu_ps(&y[i], avx_y); 
} 
for (; i < N; ++i) y[i] = a * x[i] + y[i]; // tail loop 

In this implementation, vectorization of computations is carried out using AVX2 

SIMD intrinsics from Intel. A 256-bit vector type __m256 s employed, corresponding to the 

hardware YMM registers of the Intel architecture [18, 19]. Each YMM register can hold eight 

single-precision floating-point numbers (float), enabling the simultaneous processing of eight 

elements of a float array within a single instruction. 

At the beginning, a broadcast operation is performed using _mm256_set1_ps(a) 

(line 1), which loads the scalar coefficient 𝑎 into all eight positions of the vector register 

avx_a.  Next, the vectorized loop (lines 3–9) is executed: _mm256_loadu_ps(&x[i]) and 

_mm256_loadu_ps(&y[i]) (lines 5 and 6, respectively) load contiguous subarrays of x and y 

into YMM registers. The instruction _mm256_fmadd_ps(avx_a, avx_x, avx_y) implements 

the fused multiply-add (FMA) operation (line 7), which is executed in hardware without 

intermediate storage of the product, thereby reducing execution overhead and improving 

computational accuracy. The result is stored back into memory using _mm256_storeu_ps 

(line 8). 
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Since the array length N may not be a multiple of the vector register size (eight 

elements), a tail loop is used to process the remainder with scalar instructions. This guarantees 

correctness for any input size. The same principle is applied in automatic compiler 

optimization. 

The presented code illustrates a typical SIMD-programming structure, where vector 

processing of the main data portion using YMM registers is combined with a tail section for 

residual elements. Such an approach efficiently exploits hardware-level data-parallelism 

(DLP) while maintaining universal applicability. 

Thus, manual SIMD code is optimal in terms of the «purity» and simplicity of SIMD, 

but it does not exploit the potential of loop unrolling. By contrast, MSVC auto-vectorization 

generates more complex yet more aggressive code, capable of delivering higher performance 

on modern CPUs thanks to loop unrolling and maximized utilization of FMA pipelines. 

Results and Discussion. The experiments were conducted on a laptop equipped with a 12th 

Gen Intel Core i5-12500H 2.50 GHz processor (12 cores / 16 threads), 16 GB of DDR4-3200 

MHz RAM, running Microsoft Windows 10. Program development and compilation were 

performed in MSVC 2022, targeting the 64-bit (x64) architecture with SIMD AVX2 

extensions enabled. Execution time was measured using the standard clock() function from 

the <time.h> library. 

The program was implemented in MSVC with the following settings: 

– Enable Enhanced Instruction Set = Advanced Vector Extensions 2 (x86/x64) 

(/arch:AVX2); 

– Floating Point Model = Fast (/fp:fast) 

Analysis of the obtained results (Table 1) reveals significant differences between 

scalar execution, manual SIMD vectorization, and compiler auto-optimization. The execution 

time in the scalar version grows nearly linearly with increasing problem size, reaching 4.493 

seconds for N = 109 (Fig. 1). This is expected, since the absence of data-level parallelism 

limits performance to sequential execution of instructions. 

Table 1. 

Performance metrics of computational implementations 

N 1.0×10⁵ 1.0×106 1.0×107 1.0×108 1.0×109 

τscal 0.000121 0.00135 0.01445 0.10685 4.493 

τvec 0.000046 0.00049 0.00656 0.04635 1.157 

τauto 0.000016 0.00035 0.00433 0.04599 0.855 

Svec 2.61 2.76 2.20 2.31 3.88 

Sauto 7.50 3.92 3.34 2.32 5.25 

Evec 0.33 0.34 0.28 0.29 0.49 

Eauto 0.94 0.49 0.41 0.29 0.66 

 

 
Fig. 1. Execution-time dependence on problem size 

 

Manual SIMD vectorization provides substantial acceleration. For N = 109, execution 

time is reduced almost fourfold compared to the baseline scalar version. The corresponding 

speedup ranges from 2.2 to 3.88 depending on the problem size (Fig. 2). At the same time, 
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hardware-utilization efficiency remains in the range of 0.28–0.49, indicating incomplete 

loading of vector registers and potential performance losses due to irregular memory access or 

synchronization overheads. 

 
Fig. 2. Comparison of manual and automatic vectorization performance 

 

Compiler auto-optimization demonstrates even higher performance for small and 

medium problem sizes. For N = 105, a maximum speedup of 7.5x is achieved with efficiency 

of 0.94, which is close to the theoretical limit (Fig. 3). However, as data size increases, 

efficiency decreases. For instance, at N = 108 it drops to only 0.29, which can be attributed to 

memory-bandwidth limitations and the influence of data-layout organization on the 

performance of vector computations. 

 
Fig. 3. Comparison of SIMD-resource-utilization efficiency 

 

The results indicate that automatic SIMD vectorization in modern compilers can 

deliver performance comparable to or even exceeding manual optimization, particularly for 

small- and medium-sized tasks. At the same time, when scaling to larger datasets, the 

advantages of manual optimization become more evident due to its ability to better account 

for memory-organization specifics and to fine-tune loop parameters. These findings confirm 

the necessity of a combined approach, integrating automatic optimization with selective 

manual SIMD techniques in performance-critical code sections. 

Conclusions. This study analyzed the efficiency of automatic and manual SIMD vectorization 

for array-processing tasks in the MSVC environment using AVX2 extension instructions. 

Automatic vectorization in modern compilers demonstrates a high level of 

performance, particularly for small- and medium-scale tasks. The achieved speedup of up to 

7.5x with an efficiency of 0.94 highlights MSVC’s ability to fully utilize processor SIMD 

resources through aggressive optimizations, including loop unrolling and the effective use of 

FMA pipelines. 

Manual SIMD optimization provides stable performance gains when scaling to larger 

problem sizes, achieving up to 3.88x acceleration for large arrays. However, its efficiency 

remains lower (0.28–0.49) due to memory-bandwidth limitations and the less aggressive 

nature of the transformations compared to automatic compiler optimizations. 

The optimal strategy for high-performance applications is a combined use of 

automatic and manual SIMD optimization methods, which enables a balance between 
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performance and development effort, while ensuring the scalability of software solutions in 

computational modeling of complex processes and systems. 

Future research directions include expanding the experimental base to cover various 

processor architectures (Intel, AMD, ARM), analyzing the interaction of SIMD vectorization 

with other compiler transformations, and applying ML-based methods for the adaptive 

selection of optimization strategies in HPC and computational modeling tasks. 
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Раціональне використання можливостей сучасних компіляторів, зокрема автоматичної SIMD-

векторизації, дозволяє значно підвищити продуктивність обчислень у задачах обробки масивів даних, 

комп’ютерного моделювання складних процесів та систем. Зростання вимог до продуктивності 

програмного забезпечення у наукових обчисленнях, аналізі великих даних, задачах штучного інтелекту 

та машинного навчання робить актуальним використання апаратного паралелізму на рівні даних.  

У роботі досліджується ефективність автоматичної SIMD-векторизації компілятором Microsoft Visual 

C++ у порівнянні з ручною оптимізацією, що реалізується через AVX2-інструкції. Для оцінки 

продуктивності були розроблені три реалізації обчислень: скалярна базова версія, автоматично 

оптимізований код компілятора, а також ручна SIMD-версія із застосуванням intrinsic-функцій. 

Обчислювальні експерименти проведено на прикладі операції SAXPY для масивів розміром 105–109.  

Результати показали, що автоматична SIMD-векторизація забезпечує прискорення до 7.5x із 

ефективністю 0.94 для задач малої та середньої розмірності, максимально використовуючи ресурси 

процесора завдяки агресивним оптимізаціям, таким як розгортання циклів та ефективне використання 

FMA-конвеєрів. Ручна SIMD-оптимізація демонструє стабільне прискорення до 3.88x для великих 

масивів, проте з нижчою ефективністю (0.28–0.49) через обмеження пропускної здатності пам’яті та 

меншу агресивність трансформацій. Порівняння показало, що автоматичні методи є більш зручними 

для розробника, дозволяючи значно зменшити трудомісткість написання SIMD-коду. Водночас ручні 

оптимізації залишаються актуальними при масштабуванні задач на великі обсяги даних. Результати 

роботи свідчать, що оптимальною стратегією є комбіноване застосування автоматичних і ручних 

SIMD-трансформацій, що дозволяє досягти балансу між продуктивністю, точністю та зручністю 

розробки, забезпечуючи ефективність і масштабованість програмних рішень у високопродуктивних 

обчисленнях і комп’ютерному моделюванні. Перспективи подальших досліджень пов’язані з 

розширенням експериментальної бази на різні архітектури процесорів, аналізом взаємодії SIMD-

векторизації з іншими компіляторними трансформаціями та застосуванням ML-методів для 

адаптивного вибору оптимізаційних стратегій. 


