
ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2026 ▪ Том 16, № 1

43

DOI 10.15276/imms.v16.no1.43

UDC 004.4`4: 004.23

 Informatics and Mathematical Methods in Simulation

Vol.16 (2026), No. 1, pp. 43-51

PROBLEMS OF AUTOMATIC CODE OPTIMIZATION BY THE COMPILER

I. Zhulkovska1, O. Zhulkovskyi1,

T. Rudianova2, O. Lebid2, M. Mormul2

1Dniprovsky State Technical University

2, Dniprobudivska str., Kamianske, 51918, Ukraine
2University of Customs and Finance

2/4, Volodymyr Vernadskyi str., Dnipro, 49000, Ukraine

Email: olalzh@ukr.net

Rational use of modern compiler capabilities, in particular automatic SIMD vectorization,

enables significant improvements in computational performance for tasks involving data-

array processing and computer modeling of complex processes and systems. The growing

demand for software performance in scientific computing, big-data analysis, artificial

intelligence, and machine learning emphasizes the importance of exploiting hardware-level

data parallelism. This study investigates the efficiency of automatic SIMD vectorization

provided by the Microsoft Visual C++ compiler in comparison with manual optimization

implemented through AVX2 instructions. To evaluate performance, three implementations

were developed: a scalar baseline version, a compiler-optimized automatic SIMD code, and

a manually vectorized SIMD version using intrinsic functions. Computational experiments

were conducted using the SAXPY operation for arrays sized from 105 to 109. The results

demonstrated that automatic SIMD vectorization provides up to a 7.5x speedup with an

efficiency of 0.94 for small- and medium-scale problems, effectively utilizing processor re-

sources through aggressive optimizations such as loop unrolling and efficient use of FMA

pipelines Manual SIMD optimization showed stable acceleration of up to 3. for large arrays

but with lower efficiency (0.28–0.49 due to memory-bandwidth limitations and less

aggressive compiler-level transformations. The comparison revealed that automatic

methods are more convenient for developers, significantly reducing the effort required for

writing SIMD code, while manual optimizations remain relevant when scaling to large data

volumes. The findings indicate that the optimal strategy is a combined use of automatic and

manual SIMD transformations, allowing a balance between performance, accuracy, and

development effort, thus ensuring both efficiency and scalability of software solutions in

high-performance computing and computer modeling. Future research will focus on

expanding the experimental base across various processor architectures, analyzing the

interaction of SIMD vectorization with other compiler transformations, and applying ML-

based methods for adaptive optimization-strategy selection.

Keywords: automatic SIMD vectorization, manual SIMD optimization, AVX2, MSVC

compiler, high-performance computing.

Introduction. The rapid development of computing technology [1] and software has

significantly increased the requirements for software performance, particularly in scientific

computing, computer modeling, big-data analysis, and tasks related to artificial intelligence

(AI) and machine learning (ML) [2, 3]. Execution efficiency is critical for high-performance

computing (HPC), as well as for engineering and industrial systems, where computation speed

and result accuracy directly affect the quality of forecasts and decision-making processes [4].

For a long time, performance growth was achieved by reducing transistor sizes and

increasing processor clock frequencies. However, physical limitations rendered this approach

ineffective, leading to alternative solutions [1], such as multi-core architectures, parallel

computing, and the use of SIMD (Single Instruction, Multiple Data) hardware capabilities.

One of the key directions in improving performance is automatic compiler-based code

optimization, which improves execution performance without modifying the source code.

Modern compilers implement a wide range of optimizations, including vectorization, loop

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

44

unrolling and loop fusion, dead-code elimination, function inlining, constant propagation, and

others [5].

Special attention is given to SIMD vectorization, which enables efficient exploitation

of data-level parallelism (DLP) [6]. This approach allows a single instruction to be executed

simultaneously across an entire vector of elements, significantly accelerating array-based data

processing. Such methods are particularly relevant for modeling complex technological

processes and systems [4], as well as for numerical algorithms used in large-scale data

analysis and AI models.

Until recently, most SIMD optimizations were performed manually by programmers,

requiring deep knowledge of hardware architecture and being a labor-intensive process.

However, the advancement of modern compilers has gradually enabled automation of this

process, making it possible to compare the efficiency of manual and automatic SIMD

vectorization.

In this context, the present study focuses on analyzing modern approaches to

automatic SIMD vectorization by compilers and comparing them with the outcomes of

manual optimization in order to assess the advantages and limitations of both approaches.

This allows identification of development trends in code-optimization technologies and

directions for their further improvement.

Related works. Modern compilers perform multistage program transformations at different

representation levels (source – intermediate representation (IR) – machine code), applying a

set of optimization passes. The objective of these passes is to improve execution performance

and hardware-resource utilization without altering the program’s semantics. In recent years,

compiler developers have emphasized combining program data-flow analysis with processor

architectural features to automatically select and tune optimizations [7].

A particularly important direction involves optimizations aimed at exploiting DLP

parallelism [8, 9]. These include [5]: vectorization, SLP transformations (Superword-Level

Parallelism), loop unrolling/fusion, and related transformations that reduce the number of

instructions and improve the utilization of vector-register resources in modern CPUs (SSE,

AVX/AVX2/AVX-512 for Intel, NEON for ARM architectures, etc.). The practical

effectiveness of such transformations depends on the accuracy of dependence analysis within

loops, the availability of memory-aliasing information, and support for a specific Instruction

Set Architecture (ISA) [10].

The assessment of compilers’ automatic vectorization capabilities is an active area of

research. In [5], a systematic methodology for evaluating auto-vectorizers was proposed,

demonstrating that the presence or absence of useful information in the code strongly affects

the results of auto-vectorization. Moreover, synthetic benchmarks (e.g., the Test Suite for

Vectorizing Compilers, TSVC) do not always capture the practical constraints of real-world

applications. This underlines the necessity of thorough testing and specialized approaches for

measuring compiler capabilities.

An important direction of development involves combining SIMD vectorization with

other compiler transformations, such as loop tiling (which improves cache locality and the

utilization efficiency of the memory hierarchy), software pipelining (which overlaps data

dependencies and balances instruction pipeline utilization), and memory-access optimizations

aimed at reducing latency and avoiding memory-bank conflicts. As shown in [11], the

integrated application of these approaches enables performance levels approaching those of

manual optimization, confirming the potential of multilevel strategies for program-code

optimization.

Recent studies increasingly focus on the application of ML methods for selecting

optimization passes. In [12], an ML model was proposed that predicts the suitability of

vectorization and other optimizations based on code characteristics, allowing compilers to

dynamically adapt their strategies. This opens new opportunities for creating «intelligent

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2026 ▪ Том 16, № 1

45

compilers», capable of learning from examples and accounting for both code properties and

hardware features.

Although modern compilers implement multistage optimization passes and achieve

significant acceleration in many cases, the literature review identifies a number of systemic

limitations that substantially affect the effectiveness of automatic transformations.

For instance, automatic vectorization is effective for regular access patterns, such as

linear matrix indices. However, complex address expressions, indirect indexing through

arrays, or branches within loops limit the compiler’s ability to generate efficient vector code

[13]. Preliminary data transformations (e.g., tiling, data-layout adjustments) are often

required, complicating automation.

The generation of efficient code also depends on the specific hardware architecture,

including vector width, instruction set, and support for predication. Optimizations designed

for the AVX2 architecture may not deliver performance gains on platforms with ARM SVE,

and vice versa. This complicates the creation of universal auto-vectorizers, since each

architecture has unique characteristics that influence vectorization efficiency [14].

Finding the optimal combination of passes and compiler parameter settings

considerably increases compilation time. In ML-based approaches, additional offline training

of models is required to predict the usefulness of optimization passes. This increases build

time and necessitates a trade-off between code quality and compilation cost, especially in

industrial workflows [7].

While ML-based methods for compiler optimization-pass selection show promising

results, the main challenge lies in the need for large training datasets, which may be difficult

to obtain in specific domains or for new architectures. Furthermore, ML models may have

limited generalization ability to unseen programs, reducing their effectiveness in real-world

scenarios. The lack of transparency in decision-making (explainability) within complex ML

models further complicates their integration into industrial compilers, as predicting and

controlling their behavior across different scenarios becomes difficult. These factors increase

the risk of overfitting, where a model performs well on training data but fails to efficiently

handle new or unexpected inputs. Thus, although ML approaches promise improved

optimization efficiency, their application requires careful dataset collection, model tuning, and

ensuring transparency of decisions [15].

All optimization transformations must preserve program semantics. Aggressive

transformations, such as memory-access reordering or speculative vectorization, may require

additional control mechanisms – including memory fences or runtime assertions – to prevent

correctness violations. However, introducing such safeguards can reduce runtime performance

and partially offset the benefits of automatic optimizations [16].

Research Objective. Computational efficiency in computer-modeling tasks largely depends

on the use of SIMD instructions, which enable data-level parallelism in array processing. The

traditional approach of manual vectorization (explicit SIMD) ensures a high degree of control

but requires considerable time investment and architectural expertise. In contrast, modern

compilers – particularly Microsoft Visual Studio C++ (MSVC) – implement automatic

vectorization (implicit SIMD), which can significantly reduce development effort.

The purpose of this study is to investigate the efficiency of automatic SIMD

vectorization in modern compilers using MSVC as a case study and to compare it with

manual code optimization. The work aims to identify the advantages and limitations of

automatic and manual optimization strategies, as well as to develop practical

recommendations for improving program performance in high-performance computing,

particularly in the computer modeling of complex processes and systems.

Main Part. Vectorization is the process of transforming sequential scalar instructions into

vector instructions, which – unlike multithreading models – implements data-level parallelism

(DLP) within a single processor core. This allows a single instruction to be executed over

multiple elements simultaneously, using SIMD instructions as the hardware foundation.

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

46

Modern processors support SIMD through the following extensions [17]: SSE

(Streaming SIMD Extensions) – 128 bit, AVX/AVX2 (Advanced Vector Extensions) – 256

bit, AVX-512 – 512 bit, ARM NEON, and SVE (Scalable Vector Extension).

Theoretical acceleration (Smax) depends on the ratio of the vector-register width to the

size of the data element (Wreg / Welem). For example, for AVX2 with 32-bit elements, up to

eight operations can be performed per clock cycle.

Two approaches to SIMD are distinguished: explicit vectorization (explicit SIMD) –

using intrinsic functions and inline assembly – and automatic vectorization (implicit SIMD,

auto-vectorization), in which the compiler automatically analyzes and transforms the

appropriate code into vectorized instructions without changes to the program source text.

Explicit vectorization ensures full control but requires deep knowledge of the Instruction Set

Architecture (ISA) and reduces code portability. The advantage of automatic vectorization is

reduced development effort; however, its efficiency depends on dependence analysis

algorithms and support for the specific hardware architecture.

The conditions for effective vectorization include regular memory access, the absence

of loop-carried dependencies, proper data alignment, and correct pointer handling (alias

analysis).

The primary performance metrics are execution time (τ), speedup (S), and acceleration

efficiency (E, 0  E ≤ 1):

vecscal S ,

maxSSE  ,

where τscal, τvec – are the execution times of the scalar (non-vectorized) and vectorized

versions, respectively.

Most modern compilers implement multi-level optimization – from high-level

transformation (source – IR) to machine-code generation. Vectorization is a component of

loop optimizations and machine-dependent optimizations.

GCC supports auto-vectorization at optimization level -O3 and with options such as -

ftree-vectorize and -funroll-loops. It also has good integration with OpenMP SIMD.

Clang/LLVM provides a Loop Vectorizer and an SLP Vectorizer and is oriented

toward flexible tuning. It is widely used in scientific computing projects and AI frameworks.

Intel ICC/ICX is regarded as a reference standard for high-performance computing,

offering advanced heuristics for dependence analysis and optimized generation of

AVX/AVX-512 instructions.

MSVC supports auto-vectorization for loops when using the /O2 or /Ox. optimization

flags. Built-in intrinsic functions in <immintrin.h> allow for explicit SIMD implementation.

Starting with C++17, MSVC also integrates parallel STL algorithms (Parallel Patterns

Library), which combine multithreading with vectorization. This represents a higher level of

automation, relying not only on the compiler’s internal optimization mechanisms but also on

library-level abstractions.

In MSVC, vectorization is implemented based on loop analysis in an SSA-style

intermediate representation (IR). The algorithm checks for loop-iteration independence, the

feasibility of applying predication to conditional branches, the regularity of array indexing,

and proper memory-access alignment. If alignment cannot be guaranteed, the compiler inserts

so-called «safe loads» to ensure correctness.

MSVC applies a combination of strip-mining and vectorization – splitting the loop

into a «vector» part and a «remainder» (tail) executed in scalar mode. This ensures

correctness even for arrays whose length is not a multiple of the vector width. A distinctive

feature of MSVC is its integration of the auto-vectorizer with the Profile-Guided Optimization

(PGO) system: during preliminary program runs, execution statistics are collected, allowing

the compiler to more accurately select loops for vectorization.

To evaluate the efficiency of compiler auto-vectorization and manual SIMD

optimization, three groups of tests were implemented:

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2026 ▪ Том 16, № 1

47

1) a scalar baseline implementation of array-processing algorithms;

2) an automatically optimized implementation compiled with the /O2 and /Ox,

optimization flags that activate MSVC’s auto-vectorizer;

3) a manual SIMD implementation, where the same algorithms were vectorized using

AVX2 instructions from the <immintrin.h> library.

As an example, the SAXPY operation (Single-Precision A×X Plus Y) was computed:

Niyxy iii ,...,1,  ,

where N is the array size, α – a constant, x, y – are vectors.

In the scalar baseline version (C++):

for (int i = 0; i < N; ++i) y[i] = a * x[i] + y[i];
The loop contains a simple linear indexing pattern, no conditional branches, and

regular memory access, making it suitable for automatic SIMD vectorization.

When applying automatic optimization, the Microsoft Visual C++ compiler transforms

the scalar loop into a vectorized loop using AVX2 SIMD instructions. The basic approach

involves loading eight float elements into a 256-bit YMM register and performing

multiplication and addition in vectorized form.

However, in practical implementations within the MSVC IDE, the compiler applies a

more aggressive strategy – loop unrolling and scheduling multiple vector blocks per iteration.

This means that, instead of processing only eight elements at a time, MSVC simultaneously

processes several groups of eight elements, distributing them across different YMM registers

(e.g., ymm1, ymm2, ymm3, etc.). Such an approach reduces loop-control overhead,

maximally loads processor pipelines capable of executing several SIMD operations in

parallel, and more effectively exploits FMA (fused multiply-add) instructions, which combine

multiplication and addition in a single cycle.

Thus, automatically generated MSVC code not only vectorizes computations but also

applies advanced optimizations at both the memory and instruction-flow levels. This approach

can be characterized as an aggressive SIMD-vectorization strategy.

SIMD version (AVX2):
1
2
3
4
5
6
7
8
9
10

__m256 avx_a = _mm256_set1_ps(a);
int i;
for (i = 0; i + 7 < N; i += 8) // vector loop
{
 __m256 avx_x = _mm256_loadu_ps(&x[i]);
 __m256 avx_y = _mm256_loadu_ps(&y[i]);
 avx_y = _mm256_fmadd_ps(avx_a, avx_x, avx_y);
 _mm256_storeu_ps(&y[i], avx_y);
}
for (; i < N; ++i) y[i] = a * x[i] + y[i]; // tail loop

In this implementation, vectorization of computations is carried out using AVX2

SIMD intrinsics from Intel. A 256-bit vector type __m256 s employed, corresponding to the

hardware YMM registers of the Intel architecture [18, 19]. Each YMM register can hold eight

single-precision floating-point numbers (float), enabling the simultaneous processing of eight

elements of a float array within a single instruction.

At the beginning, a broadcast operation is performed using _mm256_set1_ps(a)

(line 1), which loads the scalar coefficient 𝑎 into all eight positions of the vector register

avx_a. Next, the vectorized loop (lines 3–9) is executed: _mm256_loadu_ps(&x[i]) and

_mm256_loadu_ps(&y[i]) (lines 5 and 6, respectively) load contiguous subarrays of x and y

into YMM registers. The instruction _mm256_fmadd_ps(avx_a, avx_x, avx_y) implements

the fused multiply-add (FMA) operation (line 7), which is executed in hardware without

intermediate storage of the product, thereby reducing execution overhead and improving

computational accuracy. The result is stored back into memory using _mm256_storeu_ps

(line 8).

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

48

Since the array length N may not be a multiple of the vector register size (eight

elements), a tail loop is used to process the remainder with scalar instructions. This guarantees

correctness for any input size. The same principle is applied in automatic compiler

optimization.

The presented code illustrates a typical SIMD-programming structure, where vector

processing of the main data portion using YMM registers is combined with a tail section for

residual elements. Such an approach efficiently exploits hardware-level data-parallelism

(DLP) while maintaining universal applicability.

Thus, manual SIMD code is optimal in terms of the «purity» and simplicity of SIMD,

but it does not exploit the potential of loop unrolling. By contrast, MSVC auto-vectorization

generates more complex yet more aggressive code, capable of delivering higher performance

on modern CPUs thanks to loop unrolling and maximized utilization of FMA pipelines.

Results and Discussion. The experiments were conducted on a laptop equipped with a 12th

Gen Intel Core i5-12500H 2.50 GHz processor (12 cores / 16 threads), 16 GB of DDR4-3200

MHz RAM, running Microsoft Windows 10. Program development and compilation were

performed in MSVC 2022, targeting the 64-bit (x64) architecture with SIMD AVX2

extensions enabled. Execution time was measured using the standard clock() function from

the <time.h> library.

The program was implemented in MSVC with the following settings:

– Enable Enhanced Instruction Set = Advanced Vector Extensions 2 (x86/x64)

(/arch:AVX2);

– Floating Point Model = Fast (/fp:fast)

Analysis of the obtained results (Table 1) reveals significant differences between

scalar execution, manual SIMD vectorization, and compiler auto-optimization. The execution

time in the scalar version grows nearly linearly with increasing problem size, reaching 4.493

seconds for N = 109 (Fig. 1). This is expected, since the absence of data-level parallelism

limits performance to sequential execution of instructions.

Table 1.

Performance metrics of computational implementations

N 1.0×10⁵ 1.0×106 1.0×107 1.0×108 1.0×109

τscal 0.000121 0.00135 0.01445 0.10685 4.493

τvec 0.000046 0.00049 0.00656 0.04635 1.157

τauto 0.000016 0.00035 0.00433 0.04599 0.855

Svec 2.61 2.76 2.20 2.31 3.88

Sauto 7.50 3.92 3.34 2.32 5.25

Evec 0.33 0.34 0.28 0.29 0.49

Eauto 0.94 0.49 0.41 0.29 0.66

Fig. 1. Execution-time dependence on problem size

Manual SIMD vectorization provides substantial acceleration. For N = 109, execution

time is reduced almost fourfold compared to the baseline scalar version. The corresponding

speedup ranges from 2.2 to 3.88 depending on the problem size (Fig. 2). At the same time,

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2026 ▪ Том 16, № 1

49

hardware-utilization efficiency remains in the range of 0.28–0.49, indicating incomplete

loading of vector registers and potential performance losses due to irregular memory access or

synchronization overheads.

Fig. 2. Comparison of manual and automatic vectorization performance

Compiler auto-optimization demonstrates even higher performance for small and

medium problem sizes. For N = 105, a maximum speedup of 7.5x is achieved with efficiency

of 0.94, which is close to the theoretical limit (Fig. 3). However, as data size increases,

efficiency decreases. For instance, at N = 108 it drops to only 0.29, which can be attributed to

memory-bandwidth limitations and the influence of data-layout organization on the

performance of vector computations.

Fig. 3. Comparison of SIMD-resource-utilization efficiency

The results indicate that automatic SIMD vectorization in modern compilers can

deliver performance comparable to or even exceeding manual optimization, particularly for

small- and medium-sized tasks. At the same time, when scaling to larger datasets, the

advantages of manual optimization become more evident due to its ability to better account

for memory-organization specifics and to fine-tune loop parameters. These findings confirm

the necessity of a combined approach, integrating automatic optimization with selective

manual SIMD techniques in performance-critical code sections.

Conclusions. This study analyzed the efficiency of automatic and manual SIMD vectorization

for array-processing tasks in the MSVC environment using AVX2 extension instructions.

Automatic vectorization in modern compilers demonstrates a high level of

performance, particularly for small- and medium-scale tasks. The achieved speedup of up to

7.5x with an efficiency of 0.94 highlights MSVC’s ability to fully utilize processor SIMD

resources through aggressive optimizations, including loop unrolling and the effective use of

FMA pipelines.

Manual SIMD optimization provides stable performance gains when scaling to larger

problem sizes, achieving up to 3.88x acceleration for large arrays. However, its efficiency

remains lower (0.28–0.49) due to memory-bandwidth limitations and the less aggressive

nature of the transformations compared to automatic compiler optimizations.

The optimal strategy for high-performance applications is a combined use of

automatic and manual SIMD optimization methods, which enables a balance between

I. Zhulkovska, O. Zhulkovskyi, T. Rudianova, O. Lebid, M. Mormul

50

performance and development effort, while ensuring the scalability of software solutions in

computational modeling of complex processes and systems.

Future research directions include expanding the experimental base to cover various

processor architectures (Intel, AMD, ARM), analyzing the interaction of SIMD vectorization

with other compiler transformations, and applying ML-based methods for the adaptive

selection of optimization strategies in HPC and computational modeling tasks.

References

1. Hennessy J.L., Patterson D.A. A New Golden Age for Computer Architecture.

Communications of the ACM. 2019. Vol. 62, №2. P. 48–60. DOI:

https://doi.org/10.1145/3282307

2. Bouras M., Idrissi A. A Survey of Parallel Computing: Challenges, Methods and

Directions. Modern Artificial Intelligence and Data Science. Studies in Computational

Intelligence. 2023. Vol. 102. P. 67–81. DOI: https://doi.org/10.1007/978-3-031-33309-

5_6

3. Imbert C. Computer Simulations and Computational Models in Science. In: Springer

Handbook of Model-Based Science. Springer Handbooks. Cham: Springer, 2017. P. 735–

781. DOI: https://doi.org/10.1007/978-3-319-30526-4_34

4. Zhulkovskii O., Panteikov S., Zhulkovskaya I. Information-Modeling Forecasting System

for Thermal Mode of Top Converter Lance. Steel in Translation. 2022. Vol. 52, №5. P.

495–502. DOI: https://doi.org/10.3103/s0967091222050138

5. Siso S., Armour W., Thiyagalingam J. Evaluating Auto-Vectorizing Compilers Through

Objective Withdrawal of Useful Information. ACM Transactions on Architecture and

Code Optimization. 2019. Vol. 16, No.4. Article 40. P. 1–23.

https://doi.org/10.1145/3356842

6. Zheng R., Pai S. Efficient Execution of Graph Algorithms on CPU with SIMD

Extensions. In: 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 2021. P. 262–276. DOI:

https://doi.org/10.1109/CGO51591.2021.9370326

7. Haj Ali A. Machine Learning in Compiler Optimization. Berkeley: EECS Department,

University of California, 2021. URL:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-2.html

8. Zhulkovskyi O., Zhulkovska I., Vokhmianin H., et al. Application of SIMD-Instructions

to Increase the Efficiency of Numerical Methods for Solving SLAE. Computer Systems

and Information Technologies. 2024. No.4. P. 126–133. DOI:

https://doi.org/10.31891/csit-2024-4-15

9. Zhulkovskyi O.O., Vokhmianin H.Ya., Zhulkovska I.I., et al. Acceleration of Image

Processing Algorithms Using SIMD Technology. Informatics and Mathematical Methods

in Simulation. 2025. Vol. 15, №1. P. 15–23. DOI: https://doi.org/10.15276/imms.V15.

Vo1.15

10. Feng J., He Y., Tao Q. Evaluation of Compilers’ Capability of Automatic Vectorization

Based on Source Code Analysis. Scientific Programming. 2021. P. 1–15. DOI:

https://doi.org/10.1155/2021/3264624

11. Aleen F., Zakharin V.P., Krishnaiyer R., et al. Automated Compiler Optimization of

Multiple Vector Loads/Stores. International Journal of Parallel Programming. 2018.

Vol. 46. P. 471–503. DOI: https://doi.org/10.1007/s10766-016-0485-7

12. Ashouri A.H., Killian W., Cavazos J., et al. A Survey on Compiler Autotuning Using

Machine Learning. ACM Computing Surveys. 2018. Vol. 51, №5. Article 96. P. 1–42.

DOI: https://doi.org/10.1145/3197978

13. Cho D., Pasricha S., Issenin I., et al. Compiler Driven Data Layout Optimization for

Regular/Irregular Array Access Patterns. ACM SIGPLAN Notices. 2008. Vol. 43, №7. P.

41–50. https://doi.org/10.1145/1379023.1375664

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2026 ▪ Том 16, № 1

51

14. Sakib N., Prabhu T., Santhi N., et al. Comparison of Vectorization Capabilities of

Different Compilers for x86 and ARM CPUs. arXiv. 2025. DOI:

https://doi.org/10.48550/arXiv.2502.11906

15. Wang Z., O’Boyle M. Machine Learning in Compiler Optimization. In: Proceedings of

the IEEE. 2018. Vol. 106, №11. P. 1879–1901. DOI:

https://doi.org/10.1109/JPROC.2018.2817118

16. Vu S.T., Heydemann K., de Grandmaison A., Cohen A. Secure Delivery of Program

Properties Through Optimizing Compilation. In: Proceedings of the 29th International

Conference on Compiler Construction (CC 2020). 2020. P. 14–26. DOI:

https://doi.org/10.1145/3377555.3377897

17. Wang J., Yu L., Zhuang W., Yang X., Zhang S., Qin Z. Research on Vector Extension of

Instruction Set Architecture. In: 2024 3rd International Conference on Cloud Computing,

Big Data Application and Software Engineering (CBASE). Hangzhou, China, 2024. P.

378–385. DOI: https://doi.org/10.1109/CBASE64041.2024.10824427

18. Van Hoey J. AVX. In: Beginning x64 Assembly Programming. Berkeley, CA: Apress,

2019. P. 307–315. https://doi.org/10.1007/978-1-4842-5076-1_35

19. Intel Intrinsics Guide. Intel. URL:

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

ПРОБЛЕМИ АВТОМАТИЧНОЇ ОПТИМІЗАЦІЇ

ПРОГРАМНОГО КОДУ КОМПІЛЯТОРОМ

І.І. Жульковська1, O.O. Жульковський1,

Т.М. Рудянова2, О.Ю. Лебідь2, М.Ф. Мормуль2

1Дніпровський державний технічний університет

2, Дніпробудівська вул., Кам’янське, 51918, Україна
2Університет митної справи та фінансів

2/4, Володимира Вернадського вул., Дніпро, 49000, Україна

Email: olalzh@ukr.net

Раціональне використання можливостей сучасних компіляторів, зокрема автоматичної SIMD-

векторизації, дозволяє значно підвищити продуктивність обчислень у задачах обробки масивів даних,

комп’ютерного моделювання складних процесів та систем. Зростання вимог до продуктивності

програмного забезпечення у наукових обчисленнях, аналізі великих даних, задачах штучного інтелекту

та машинного навчання робить актуальним використання апаратного паралелізму на рівні даних.

У роботі досліджується ефективність автоматичної SIMD-векторизації компілятором Microsoft Visual

C++ у порівнянні з ручною оптимізацією, що реалізується через AVX2-інструкції. Для оцінки

продуктивності були розроблені три реалізації обчислень: скалярна базова версія, автоматично

оптимізований код компілятора, а також ручна SIMD-версія із застосуванням intrinsic-функцій.

Обчислювальні експерименти проведено на прикладі операції SAXPY для масивів розміром 105–109.

Результати показали, що автоматична SIMD-векторизація забезпечує прискорення до 7.5x із

ефективністю 0.94 для задач малої та середньої розмірності, максимально використовуючи ресурси

процесора завдяки агресивним оптимізаціям, таким як розгортання циклів та ефективне використання

FMA-конвеєрів. Ручна SIMD-оптимізація демонструє стабільне прискорення до 3.88x для великих

масивів, проте з нижчою ефективністю (0.28–0.49) через обмеження пропускної здатності пам’яті та

меншу агресивність трансформацій. Порівняння показало, що автоматичні методи є більш зручними

для розробника, дозволяючи значно зменшити трудомісткість написання SIMD-коду. Водночас ручні

оптимізації залишаються актуальними при масштабуванні задач на великі обсяги даних. Результати

роботи свідчать, що оптимальною стратегією є комбіноване застосування автоматичних і ручних

SIMD-трансформацій, що дозволяє досягти балансу між продуктивністю, точністю та зручністю

розробки, забезпечуючи ефективність і масштабованість програмних рішень у високопродуктивних

обчисленнях і комп’ютерному моделюванні. Перспективи подальших досліджень пов’язані з

розширенням експериментальної бази на різні архітектури процесорів, аналізом взаємодії SIMD-

векторизації з іншими компіляторними трансформаціями та застосуванням ML-методів для

адаптивного вибору оптимізаційних стратегій.

