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Modern ship power plants (SPPs) represent highly complex technical systems operating
under variable, high-load, and often harsh maritime conditions. These systems are
characterized by a high degree of component interdependence, making the identification
and prediction of failures a challenging task. Traditional deterministic diagnostic
approaches often fail to accurately reflect the stochastic nature of technical failures and
cascading effects. This article presents a comprehensive integrated approach to failure
diagnostics based on a case-based reasoning (CBR) system. The core of the methodology is
a structured case base that unites historical failure data, probabilistic models (including
Bayesian networks and Markov processes), and discrete-event simulation tools. The
structure of each case is standardized and includes failure descriptions, associated risk
levels, diagnostic method references, operational context, and interconnection effects. The
database currently includes over 5,000 unique failure scenarios derived from operational
logs, maintenance records, and simulated data. To increase diagnostic accuracy and system
adaptability, the authors implement dynamic updates and automated optimization of
parameter weights using the L-BFGS-B algorithm. Simulation modeling is applied to
reproduce rare and cascading failure conditions and to improve the generalization capacity
of the system. Numerical experiments demonstrate that this integrated approach achieves a
diagnostic accuracy of up to 95%, reduces false positives by 30%, and increases system
flexibility in real-time operational contexts. The fusion of CBR with probabilistic and
simulation models enables the system not only to diagnose known patterns but also to
predict new and atypical failures, accounting for system degradation over time. The result
is a knowledge-driven support tool for decision-making in ship power plant operations,
significantly enhancing operational safety and maintenance planning. This work has
implications for the development of intelligent diagnostic platforms in complex marine and
industrial systems.
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Introduction. Modern ship power plants (SPPs) are complex technical systems (CTS)
operating under harsh operational conditions [1]. The reliability and efficiency of SPP
operation largely depend on the timely diagnosis and prediction of equipment failures [2].
However, traditional diagnostic methods based on deterministic models or expert assessments
often lack flexibility and fail to account for the complexity of multicomponent systems [3, 4].

One of the promising approaches for diagnosing failures in CTS equipment is Case-
Based Reasoning (CBR), which enables the use of accumulated experience to identify similar
failures and predict their possible consequences [5, 6]. However, existing CBR systems face
several challenges, such as optimizing the case database, accounting for probabilistic
dependencies between parameters, and reducing computational load when processing large
volumes of data.

An analysis of existing CBR optimization approaches shows that significant efforts
have been directed toward improving case retrieval methods and database management. For
instance, the study [7] proposes an enhanced case retrieval method in CBR systems for
diagnosing aircraft engines. This approach considers attribute interactions, improving the
accuracy of equipment condition diagnostics. However, its high computational complexity
and limited applicability (aviation engines) make it less universal. The study [8] introduces a
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dynamic case base maintenance method that optimizes database size without loss of accuracy.
However, this method does not address case interaction effects or performance efficiency with
large data volumes. Researchers in [9] presented a case base and feature dictionary update
method based on the theory of belief functions. This method's advantage is the automatic
adjustment of the knowledge base size, though its implementation complexity and potential
increase in computational load remain open issues. Ayed et al. developed a method for
removing duplicate cases in the case base, but it requires manual tuning [10].

Thus, despite extensive research in CBR optimization, the integration of dynamic
updating and uncertainty processing remains a relevant challenge. For effective CBR
application, a structured case base must be developed that includes not only historical failure
data but also probabilistic estimates, information on cascading effects, operational parameters,
and simulation-based failure modeling results for CTS.

The aim of this study is to develop and justify an integrated approach to diagnosing

failures in marine power plants by creating a case-based reasoning (CBR) database that
combines probabilistic models and simulation modeling. This approach enables consideration
of the stochastic nature of failures, cascading effects, and dynamic changes in operational
conditions, thereby improving the accuracy of diagnostics and failure prediction.
Main part. Case Structure. To standardize the representation of failures, a case structure has
been developed, including: failure description (type, causes, consequences); failure risk
assessment (Harrington’s desirability function [11], probabilistic failure assessment);
component characteristics (unit condition, remaining resource, failure intensity); diagnostic
methods (CBR, Bayesian networks [12, 13, 14], simulation modeling [15]); data sources
(maintenance logs, OREDA databases [16], expert assessments).

As an example, the structure of a single case can be presented in Table 1.

Table 1.
Case structure of SPP equipment failures

Parameter

Description

Method/Source

Failure type

Failure code(l — mechanical 2 —
electrical etc.)

Expert assessment,
technical documentation

Failure causes

List of identified failure causes

Log analysis, expert opinion

Failure
Consequences

Description of the impact on the
system (efficiency reduction,
accident risk, etc.)

Technical documentation,
reports

Failure risk

Value based on desirability function

Harrington function

(desirability) (0-1) calculation
Failure probability gaoﬂs‘;ge probability assessment (¢.g. | g, ciical data (OREDA)
Unit Condition (Si) 0 (operational). 1 (degradation). Expert assessment condition

2 (pre-failure). 3 (failure)

Sensors

Remaining resource

(Ri(t))

Assessment of the remaining service
life of the unit

Markov models

Diagnostic methods

Applied algorithms and similarity
measures

CBR. Bayesian networks,
simulation modeling

The formalized structure of a failure precedent can be represented as a JSON object.
This format is well suited for machine processing and visual representation of relationships:
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{
"failure case": {
"identifier": {
"code": "UNQ-12345",
"date": "2025-03-19",
"source": "OREDA"
¥
"failure type": {
"category": "mechanical”,
"causes": ["wear", "fatigue damage"]
}s
"operational context": {
"working_conditions": {
"temperature": "75°C",
"vibration": "increased",
"load": "90%"
¥s

"operating_mode": "overload",
"external factors": ["oil contamination"”, "low fuel quality"]

¥
"failure risk": {
"probability": 0.15,
"risk _category": {
"method": "Harrington",
"level": "high"
¥
"expected damage": {
"cost": 15000,
"safety impact": "critical"
}
}s
"interconnected components'": {
"subsystems": ["fuel system", "hydraulics"],
"connection_type": {
"mechanical": true,
"electrical": false,
"informational": true
¥s
"cascade_effects": ["pump damage", "
}s
"data sources": {
"historical": ["OREDA", "maintenance logs"],

"simulation": ["Bayesian networks", "discrete-event modeling"],
"sensor_based": {

"IoT": true,
"SCADA": true
}s
"expert_assessments': ["maintenance engineers", "diagnostic reports"]
}s
"diagnostic_methods": {
"CBR": {
"case retrieval": "k-NN",
"adaptation": "gradient methods"

¥s
"Bayesian_networks": {
"analysis": "probabilistic"

5

overheating"]
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"hybrid methods": {
"CBR_and machine learning": ["L-BFGS-B", "regression"],
"CBR and simulation": ["Markov processes", "Bayesian networks"],
"weight optimization": ["gradient methods"]

}

}
}
}

The presented code reveals: structuredness — data connections are interrelated;
flexibility — easily expandable with new parameters; processing readiness — applicable in
diagnostic and analysis systems.

This structure includes key failure parameters, data sources, and diagnostic methods,
enabling the standardization of the case database and improving the efficiency of searching
for similar cases.

Case Database Formation.

Updating the knowledge base includes recalculating failure probabilities, filtering data,
and dynamically adapting the diagnostic system. The main data categories are presented in
Table 2.

Table 2.
Main Data Categories in the Knowledge Base
Data Category Description Data Source
Historical data on failures, their causes,| Operational data, maintenance
Case Database :
and consequences logs, operational reports
Probabilistic Estimates of failure probabilities and | Failure statistics, Bayesian
Failure Models their cascading effects networks. expert assessments
Simulation Simulated failure situations, including Discrete-event modeling, .\
. . Monte Carlo method, cognitive
Scenarios rare and cascading events
models
Repair and Information on performed repairs and | Technical documentation,
Maintenance Data| technical maintenance operational logs
Anomalies and Data on identified deviations in Analysis of real operational
Verification equipment operation data, statistical anomaly control
Adaptive CBR Adjpstment of parameter yvelghts . .
during analogy search to improve Dynamic training on new data
Parameters

diagnostic accuracy

The developed case database includes over 5,000 records of ship power plant equipment
failures collected from operational reports, technical inspections, and emergency situations.
The database structure provides information on failure types, operating conditions,
probabilistic characteristics, and diagnostic procedures.

The most common failure categories include fuel system malfunctions (27% of cases),
bearing failures (18%), gas turbine overheating (15%), and anomalies in electrical system
operation (12%).

The automatic knowledge base update process consists of several key stages: adjusting
failure probabilities, including recalculations based on Bayesian analysis; filtering data to
eliminate unreliable information; and adapting diagnostic models, including parameter weight
adjustments in CBR.

Simulation Model for Predicting the Technical Condition of Ship Power Plant
Equipment.
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To improve the accuracy of predicting the technical condition of SPP equipment, a
simulation model is used, which includes: modeling of component failures (Weibull and
exponential distributions); consideration of cascading failure effects; analysis of operational
modes and maintenance procedures.

The relationships between the model components are shown in Figure 1. The
comprehensive SPP schematic (Fig. 1) [17] includes not only the main power units (e.g., the
main engine, power plant) but also auxiliary systems that ensure their operation and the safety
of the vessel.

The following relationships can be established between the components and subsystems
in Figure 1: main engine corresponds to the main engine (8); cooling system is not explicitly
specified in the structure but may be part of the remote-automated control subsystem (9) or
included in the main engine support system; fuel system is not directly highlighted but is
logically linked to the boiler plant (5) and the main engine (8); generator may be part of the
ship's power plant (6); pumping system is likely connected to the ballast and bilge subsystem
(10) and other SPP support systems; power supply corresponds to the ship's power plant (6);
automation system may relate to the remote-automated control subsystem (9).

Fig.1. Structure of the SPP: input component 1; manual control of the main engine 2;
compressed air subsystem 3; propulsion and steering control subsystem (PSC) 4; boiler plant
5; ship power plant 6; fire protection system 7; main engine 8; remote-automated control
subsystem 9; ballast and bilge subsystem 10; power transmission from the main engine to the
propeller 11; emergency PSC drive 12; PSC 13; measuring instruments subsystem 14;
sanitary water treatment subsystem 15; output component 16.

The key parameters of the simulation scenarios for SPP equipment operation are
presented in Table 3. Table 3 contains the parameters of failure simulation scenarios, allowing
for an analysis of system behavior under various operating conditions.

Table 3.
Parameters of Simulation Scenarios for SPP Equipment Operation
Scenario Failure Rate (avg.) Load Level Possible
Consequences
Normal Conditions | Low (0.01 failures/h) | Normal (70%) Inmgmﬁcant )
efficiency reduction
Medium (0.05 . o Accelerated wear of
Accelerated Wear failures/h) High (90%) key components
.. . ) . Cascading failures
0, H
Critical Failures High (0.1 failures/h) | Extreme (100%) SEU failure
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The analysis of accumulated data has made it possible to establish the dependence of the
probability of SEU equipment failures on operating time, as shown in Figure 2.
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Fig. 2. Probability of Failure with Increasing Operating Time of SPP Equipment

The graph illustrates the increase in failure probability with extended equipment
operation. In the initial phase (up to 5000 hours), the probability of failure is low,
corresponding to the period of normal operation. After 15,000 hours, the probability of failure
rises more sharply, indicating the need for more thorough maintenance. By 25,000 hours, the
probability approaches 1, meaning the equipment is almost certain to fail. The curve
demonstrates the characteristic growth in failure probability with increased operating time,
confirming the necessity of using probabilistic models and simulation modeling in developing
the case base. The obtained data confirm that accounting for the stochastic nature of failures
and integrating the CBR method with probabilistic models not only enables failure prediction
but also enhances diagnostic accuracy at various stages of the equipment life cycle.

Integration of Diagnostic Methods

The simulation model incorporates Bayesian networks for analyzing failure
interdependencies, Markov processes [ 18] for modeling state transitions of the equipment, and
cognitive modeling that accounts for expert knowledge and operational conditions. To
improve diagnostic accuracy, CBR is used to identify similar failures, Bayesian networks to
assess probabilistic dependencies, Markov processes to predict degradation, and simulation
modeling to generate rare failures.

Table 4 presents the distribution of diagnostic methods and their functional purposes.

Table 4.
Distribution of Diagnostic Methods and Their Functional Purposes
Method Analyzed Elements Expected Result
CBR Components similar to Finding precedents with similar symptoms
recorded failures
Bayesian Interconnected system Probabilistic assessment of cascading
Networks elements failure effects
Markov Models Remaining resource of Prediction of component degradation
components
Simulation Failure dynamics in the Generation of artificial precedents to
Modeling system supplement the database
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Figure 3 presents a comparison of equipment failure probabilities when using traditional
diagnostic methods versus employing a case-based database integrated with the CBR method.
It is evident that utilizing the case-based database reduces the probability of diagnostic errors,
as accumulated failure experience is used to refine predictions. This demonstrates that the
proposed approach not only enhances diagnostic accuracy but also improves the system’s
adaptation to changing operating conditions.
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Fig. 3. Probability of Equipment Failures in SPP with and without CBR

The graphs illustrate the effect of applying CBR, which manifests in a reduction in
diagnostic errors and an increase in prediction accuracy. The connection to the case-based
database reflects the stochastic nature of failures: the graphs show how the probability of
equipment failure increases over time. This confirms the importance of considering stochastic
factors in diagnostics, which is achieved through the integration of probabilistic models in the
case-based database.

The advantage of CBR over traditional diagnostic and failure prediction methods for
SEU equipment is evident in the differences in failure forecasts: traditional approaches do not
utilize accumulated experience, leading to a higher probability of diagnostic errors. In
contrast, CBR analyzes historical data and adapts diagnostic decisions, reducing the
likelihood of errors. This confirms that the case-based database refines predictions by
incorporating previously recorded failures.

Simulation modeling enhances forecasting accuracy by accounting for not only frequent
but also rare, cascading failures. Utilizing accumulated data improves the prediction of
potential malfunctions, reducing the number of false alarms and increasing diagnostic
accuracy.

The integration of these methods ensures not only precise fault diagnostics but also
system adaptability to new operating conditions, increasing prediction reliability and
minimizing the likelihood of missed failures.

Numerical experiments have shown that applying the case-based database in
combination with CBR adaptation increases diagnostic accuracy from 85% (when using only
traditional probabilistic methods) to 92-95%. The integration of Bayesian networks and
simulation modeling reduced the number of false-positive diagnostic decisions by 30%, while
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using optimization algorithms for parameter weighting reduced the mean absolute error in
failure prediction by 12% (Table 5).

Table S.
Impact of the Case-Based Database on Failure Diagnosis Accuracy
Processing

Diagnostic Method ACC(? racy kP Q?alse FN (Ealse Time

) Positives) Negatives) s)
Probabilistic Methods o o
(without CBR) 85 18% 12% 2.1
CBR 89 14% 10% 18
Integrated Approach 95 8% 5% 1,2

Optimization of the Case Base

To enhance diagnostic accuracy and system adaptability, the case base is regularly
updated and optimized. One of the key mechanisms is the adjustment of parameter weights
that determine the degree of similarity between failure cases. Optimization is performed using
the L-BFGS-B method, which minimizes the error between reference and predicted failure
similarity values:

= argmfnwz (S (i) — S pred (i, w))?
i

where Serue (D) is the reference similarity value between cases (based on expert assessments or
failure statistics);

Sprea(ls @) is the system-predicted similarity value, dependent on parameter weights o,
o represents the diagnostic parameter weights, defining the contribution of various factors to f
ailure similarity assessment

The L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box
constraints) method is a modification of the quasi-Newton optimization method BFGS that:
allows minimization of a function dependent on a large number of parameters; uses an
approximate inverse Hessian matrix representation to save memory; supports constraints on
parameters, which is essential when optimizing weights (e.g., ensuring weights remain
positive and sum to 1).

The main steps in updating the case base include: dynamic adjustment of parameter
weights based on new operational data; filtering out outdated and irrelevant data to maintain
database relevance; adapting the case base structure considering the results of simulation
modeling.

Applying this approach ensures more accurate matching of failure cases and improves
the diagnostic system's adaptability to changing operating conditions.

Conclusions. The presented approach to case base development justifies the necessity of
structured failure data storage and the creation of a unified knowledge base that enables
efficient failure diagnostics and prediction. Within the study, a precedent structure has been
developed, incorporating key failure parameters, their probabilistic assessments, and links to
operational factors. A knowledge base concept has been formulated, integrating the case base,
probabilistic models, and failure simulation scenarios. Methods for automatic data updates
have been defined, including CBR adaptation, failure probability recalculations, and data
verification, ensuring system relevance. The integration of probabilistic and simulation
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methods allows consideration of cascading failure effects and the prediction of rare

malfunctions, significantly improving diagnostic accuracy.

The developed case base integrates the CBR method with probabilistic models and
simulation modeling, enhancing the accuracy of ship power plant failure diagnostics. The
analysis of the proposed approach has shown that using the case base increased diagnostic
accuracy to 95% due to the accumulation and structuring of failure experience, while
probabilistic methods ensure the consideration of the stochastic nature of failures, which is
particularly critical for complex technical systems. Simulation modeling enabled the
consideration of rare and cascading failures, expanding prediction capabilities. The developed
case base covers the main types of failures in ship power plants, including fuel system
malfunctions, gas turbine engine overheating, and electrical system anomalies. The process of
accumulating and analyzing cases contributes to identifying failure patterns and their early
prediction, reducing the number of false positives by 30%.

Thus, the developed case base serves as a key element of an intelligent ship power plant
failure diagnostics system. It facilitates diagnostic data accumulation, decision support,
enhanced failure prediction accuracy, as well as consideration of the stochastic nature of
failures and cascading effects. The integrated approach, combining CBR, probabilistic
models, and simulation modeling, significantly improves diagnostic efficiency and the
reliability of ship power plants.
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THTETPOBAHMM MIAXIJI 10 CTBOPEHHS BA3H MIPELEIEHTIB JIJIS
JIAT'HOCTHUKHU BIJIMOB CYJJHOBUX EHEPTETHUYHUX YCTAHOBOK

B.B. Buuyxanin, A.B. Buuyxanin

Hamionansauii yHiBepcuter «Oecbka Mol TeXHIKa
1, IlleBuenka mp., Mm.Oxeca, 65044, Ykpaina
Email: v.v.vychuzhanin@op.edu.ua

Cyuacui cymHoBi enepretnmyHi ycraHoBku (CEY) € Hag3Bu4aliHO CKJIaJHAMH TEXHIYHUMU
CHCTeMaMH, [0 (YHKIIOHYIOTb B YMOBaX BHCOKHMX HABaHTa)XCHb, 3MIHHHX CEpENOBHIIHUX
rapaMeTpiB Ta 3HaYHOI B3aEMO3AIECKHOCTI MK migcucremMamu. Lli ¢akTopu 3HAYHO YCKIAIHIOIOTH
MIPOIIECH CBO€YACHOI TiarHOCTHKH Ta NPOTHO3YBaHHS BiAMOB. TpaiuiiiiHi IeTepMiHOBaHI METOIH
BUSIBISIFOTBCSL HEJJOCTATHBO e(DeKTUBHUMHU, OCKIIBKM HE BPaXOBYIOTb CTOXAaCTHYHHUI XapakTtep 300iB i
KacKa/IHy IPUPOJy HACTIIKIB. Y CTaTTi 3alpONOHOBAHO IHTETPOBAHMH Mi/IX1Jl 1O CTBOPEHHS CHCTEMH
JIarHOCTHKM Ha OCHOBI Meroxy mpeueaeHTtiB (CBR). V iioro ocnHoBi nexwuts yHiikoBaHa O6aza
MIPELEeICHTIB, 10 BKJIIOYAa€ iCTOPWYHI JaHi, WMOBipHiCHI Moneni (0aeciBchki Mepexi, MapKOBCHKi
MPOLIECH) Ta pe3yJIbTAaTH iMiTaliiiHOro MozaemoBaHHs. CTPYKTypa KOKHOTO MPELEACHTY mependayae
OIUC THITY BiIMOBH, OLIIHKY PU3UKIB, yMOBH €KCILTyaTaIlil, Jokepenia JJaHuX, METOAU JIIarHOCTHKH Ta
B33a€EMO3B’sI3KM Mk KomnoHeHTamu. CdopmoBaHa 0aza mictuth monan 5000 BHIAIKIB BiJIMOB,
OTPUMaHUX 13 eKCIUIyaTaliifHOl JOKYMEHTallil, J>XypHaliB OOCIyroByBaHHSI Ta pe3yJbTaTiB
MojenoBaHHs. JIJIs MABHMINEHHS TOYHOCTI MIarHOCTHKH Ta aJallTUBHOCTI CHCTEMH 3aCTOCOBAHO
MeXaHi3M aBTOMAaTUYHOTO OHOBJIEHHS, onTuMi3zamii BaroBux koedimientie (meroq L-BFGS-B), a
TaKOX IIOCTifiHE NOMOBHEHHs 0a3u HOBUMH CIEHapisMu 300iB. IMiTalliiiHe MOJEIIOBaHHS O3BOJISIE
BPaxOBYBAaTH SIK 4YacTi, TaK 1 piiKicHI a00 KacKkaaHi BIAMOBH, (GOPMYIOUHU MOBHY KAPTUHY MOXKIHBUX
TEXHIYHUX PU3UKIB. Pe3yIpTaTH YMCeNnbHUX eKCIEPUMEHTIB MiATBEPHKYIOTh €EeKTUBHICTD MiAXOMY:
TOYHICTh AIaTHOCTHUKH Jocsirae 95%, 3MEHIIYeThCsl YacTKa XMOHOMIO3UTHUBHUX pe3ynbTatiB Ha 30%, a
caMma CHCTeMa BHSIBIISIE€ THYYKICTh J0 3MiH yMOB ekciuryararii. Inrerpanis CBR 3 #iMmoBipHicCHUMH Ta
IMITaIifTHIMA METOJaMH JO3BOJISIE TPOTHO3YBATH PO3BUTOK BiMOB Ha PI3HHX €Tamax >KUTTEBOTO
UKy OOJIaAHAHHS, 3HIDKYIOUH PH3UKY SKCIUTyaTallil Ta ONTHMIi3ylouH IJIaHyBaHHS 00CITyTOBYBaHHS.
3anporioHoBaHa 0a3a 3HaHb € €PEKTHBHUM IHCTPYMEHTOM MiATPUMKH TPUHHSATTS pilmieHs y chepi
MOPCBHKOI €HEepTeTHUKH i MOKe OYTH afanToBaHa ISl iHIIUX TEXHIYHO CKIIAIHUAX CHCTEM.

Kiaro4oBi cjioBa: miarHOCTHKA HECTPaBHOCTEH, MPOTHO3YBAaHHSA BiIIMOB, CTOXAaCTHYHI IIPOIIECH,
IHTENIeKTyallbHI CHCTEMH, eKCIUTyaTaIliifHi PU3UKH, AaHATITHKA TAaHHX.
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