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A new method of designing controllers with an integral term as part of
multivariable optimal control systems in discrete time is proposed. Traditional
methods of designing multivariable controllers have been investigated, and a
prototype of the controller has been chosen as a basis for comparison. Specific
formulas for design of the proposed controller are given. Comparing the transition
processes of the control systems outputs with a unit-step disturbance at the plant
input using the proposed controller and optimal controller obtained by the typical
method, it can be concluded that the proposed controller compensates the
disturbance and gives a faster transition process. The main feature of the proposed
method is that, for multivariable systems with a large number of inputs and
outputs, it significantly simplifies the design of the controller. This is because it
does not require the extension of the plant state matrix by the number of inputs at
the transfer of the matrices to the optimal controller design programs.
Keywords. MIMO optimal controller, integral term, new design method,
computational simplification of design.

Analysis of the problem. It is known that the integral component in regulators
performs an important function in ensuring the accuracy of reference maintenance and
compensation of disturbances in control systems. Let us briefly consider the
implementation options of the integral component in multidimensional optimal
control systems in discrete time.

Let's define a multidimensional control plant in the state space in the form

X, ,=A-x+B-u+B-f
Y, =C-x

We’ll assume that the plant under consideration has the same number of
inputs and outputs.

Let's consider the main options for including integrators in the controllers of
multivariable discrete control systems [1-5] (Fig. 1).

The simplest is option 1. Here, a multivariable discrete integrator is simply
included in parallel with the state controller. Accordingly, it is optimal according to
the integral criterion

1 0
JZEle.T Q-x, +u] -R-u,
i=0

MIMO state controller can be designed with the MATLAB function
Cl=dlgr(Ad,Bd,Q,R). Accordingly, the optimal multivariable state controller is
calculated using the MATLAB program Ad1=[Ad zeros(n,m); C eye(m)]; Bd1=[Bd;
zeros(m)]; [Kd,P]=dlqr(Ad1,Bd1,Q,R); C1=Kd(m:n);C2=Kd(m, n+m);

212



[H®OPMATUKA TA MATEMATUYHI METOIW B MOJEJIFOBAHHI = 2023 = Tom 13, Ne 3-4

Fig 1. Diagrams of the main options of integral action realization in discrete MIMO
control systems

The main options for including integrators in the controllers of multivariable discrete
systems.
In option 2, the parameters of the I-component are determined by the

extended matrix
X, 4 0] x B B
— . + U, + . fl
Qi+1 C ] qi O 0

In option 3, the control is implemented in the velocity or differential form.
The control law has the form (7 is the reference)
u=u_,+C -x.+C,-(y ,—r).
This implementation is less accepted, but it has one advantage, namely there
is the ability to limit the rate of change of state variables and control actions.

Option 4 is quite effective, but structurally more complex.
Let's introduce optimality criterion in the form:

1 0
J:—Zel.T ‘Q-e+Au’ -R-Au,,
295
where Au, =u;, —u, e, =r—y,

Determining , Ax.,, = x,,, — X,, the system can be written in the

form
Ax.,, =A-Ax,+B-Au,
Ay, =C- Ax,
By entering the vector e, =e. —C - Ax,
problem of controller design

.1 » we will get the standard
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K =(K,,K,)=dlqr(Al,BL,OLR),

a1 mles)ol o)
Al = ., Bl= , Ol=
—C-A4 I —C-B 0 0

Thus, the controller can be written as Aui =—K - Ax, . Decomposing the matrix K
into blocks K=/KI K2], the controller can be rewritten in the form
u, =u,,—K, -Ax, — K, - e or, which is also the same,

i
u =—K, -x, - K, -Zej
Jj=0

The program code for the controller matrix calculation has the following form:
Al=[A zeros(n,m); -C*A eye(m)];
B1=[B;-C*B];
QIl=[zeros(m,n+m); zeros(n,m) QJ;
K=dlqr(A1,B1,Q1,R);
KI1=K(m:n); K2=K(m,n+1:m+n);
Thus, the control law for the system can be written as
Au;, =—K - Ax; . Decomposing the matrix K into blocks K=/KI K2], the

controller can be rewritten in the form or, which is also the same,
u,=u_,— K -Ax, - K, -¢
In option 4, the control problem is reduced to finding four unknown matrices

K,L M,N
L-B-R-B"-M-0Q=0;
(L-B-R-B" -N)+K+L-A=0;
~(N-B-R-B" M)+K+A"-M=0;
—~(N-B-R-B" -N)+M+N-A+L+A4"-N=0

To solve the system it is necessary to use optimization algorithms. For
example, the YALMIP library allows to conveniently solve optimization problems
and is focused on control system design. This library works in both MATLAB and
Octave. The software implementation of the optimization problem has the following
form.

A=[-0.313 56.7 0;-0.0139 -0.426 0;0 56.7 0];

B=[0.232;0.0203;0];C=[0 0 1]; D=0;

Q=1diag([1 1 5¢2]); R=1/10; % inv(R)

L=sdpvar(3,3,'full"); K=sdpvar(3,3,'full");

M=sdpvar(3,3,'full"); N=sdpvar(3,3,'full");

eps=0.01;

Constraints = [0<=yl<=eps;0<=y2<=eps,0<=y3<=eps;0<=y4<=eps;];

sol = optimize(Constraints);

N1=double(N);M1=double(M);

KP=inv(R)B'N1; KI=inv(R)B'*M1,

It should be noted that the solution of even a relatively simple problem is not
trivial. The problem is not solved for all possible R and Q. There is a fairly high chance
of obtaining an unstable system due to the presence of an imprecise solution. Since,
as a rule, in order to achieve a significantly different result, the weight matrices
coefficients should be significantlly changed, the greater the difference between the
coefficients, the less accurate the solution. Therefore, it is quite difficult to apply the
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given option as a universal one. Nevertheless, this option has one advantage: the
integral component is found based on the criterion of optimality.

To compare the action of the considered options, we will simulate them. To
do this, let's set the object model in the form with one input and one output (to simplify
the analysis of responces) in the form Ac=[-0.313 56.7 0; -0.0139 -0.426 0; 0 56.7 0];
Bc=[0.232;0.0203;0]; C=[0 0 1]; D=0; dt=1; [A B]=c2d(Ac,Bc,dt); Q=diag([1 1 1]);
R=1. Graphs of responces are shown in Fig. 2.

4
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o4

0z

Fig. 2. Comparison of the closed-loop control systems simulation results using
controllers of
options 1 —4

The figure shows that the use of a simple integrator (option 1) significantly reduces
the control quality. Other options in the given example give approximately the same
results. Therefore, for further research, we will choose the typical (simpler) option 2.
Main part. Instead of the typical state space expansion procedure used in the
description of option 2, we offer a modified procedure: synthesize a standard optimal
state controller K, and then find the matrix of the integral component KK according to
the formula

c 0

where W is a positive definite diagonal tuning matrix. The controller is given by the
formula

. A-1 BY'
KK=(K-A-W-B W+K-B—I)-£ j

Upy =t —K1-(x —x) = K2y,
Kl1=KK(m,:n),K2=KK(m,n+1:n+m)
To study the transition processes with the proposed controller, we will choose

a simple plant in discrete time, which in the state space is defined by matrices with
the sample time dt=1.
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0.5 0.2 1
A= B=| _|,C=(3 4)
0.1 0.4 2
In the form of a transfer function, the plant has the form

11-z-3.6
z2—0.9-z+0.18

The plant step response is shown in Fig. 3
y

W(z)=

25

20

15

10 1

Fig. 3. The plant step response

Let's design the proposed controller by choosing

Q=1000%*eye(2), R=1, W=0.14;

K=dlqr(A,B,Q,R);

KK=[K*A-W*B' W+K*B-1]*inv([A-eye(2) B; C 0]);
As a result, we get

KK=(-0.1816 -0.0628 -0.0427), K1=( -0.1816 -0.0628), K2=-0.0427.

The transient processes of output and control in a closed-loop control system
with the proposed controller are shown in Fig. 4.

0.5

0 o] 10 15 20 LS 0 S 10 15 20 L8
Fig. 4. Transient processes of output and control under a step disturbance in a
closed-loop control system with the proposed controller

For comparison, Fig. 5 shows transient processes with the initial optimal
static controller K.
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Fig. 5. The output transient processes in the closed-loop control system with the
optimal static controller

Conclusions. To draw conclusions, we will compare the obtained responses with the
responses in the system that uses a typical controller of option 2. For this, we will use
the program code

AlI=[ A zeros(2,1);C 1]; BI=[B;0];

QI=[1000 0 0; 0 1000 0; 0 0 1]; RI=1;

KI=dlqr(AILBL,QLRI);

KI1=KI(1:2); KI2=KI(3);

We get KI=—(0.1954 0.2513 0.0128), KI1=-(0.1954 0.2513); KI2=-0.0128.

From the comparison of the responses in the control system at the output when using
the proposed (1) and typical (2) controllers, it can be concluded that the proposed
controller qualitatively compensates for the disturbance and provides a faster
response. At the same time, for MIMO systems with a large number of inputs and
outputs, it significantly simplifies the controller design, as it does not require the
expansion of the matrix of plant states by the number of inputs before transferring the
matrices to the design program (for example, dlqr).

y T T T T T T T T T

0 I i I I I I I I I
0 5 10 15 20 25 30 35 40 45 ts
Fig. 6. Comparison of the closed-loop control systems simulation results using the
proposed (1) and typical (2) controllers
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HEKJIACUYHUUN METOJI PO3PAXYHKY IHTEI'PAJIBHOI CKJIAJ1OBOI
B PET'YVJISITOPAX BATATOBUMIPHUX CUCTEM YIIPABJIIHHS B
JTUCKPETHOMY YACI

O.A. Cronakesuu!, A.O. CtonakeBuu?

"'Hanionansuuii yrisepcurer «OnechbKa MmoaiTexHikay
1, IlleBuenka nip., Oneca, 65044, Ykpaina
2 [lepkaBHUIT YHIBEPCUTET IHTENEKTYaILHUX TEXHOJOTIH 1 3B’ I3Ky
1, Ky3neuna, Oneca, 65000, Ykpaina
e-mail: stopakevich@gmail.com

3anporoHOBaHO HOBUH METOJA PO3PaXyHKY PETYISATOPIB 3 IHTErpajJbHOK0 CKIIAZOBOIO B CKIIAIi
0araToBUMipHUX ONTHMANBHUX CHCTEM VIIPaBIiHHSA B MJHCKpEeTHOMY 4daci. [IpoaHamizoBaHO
TpaAWIiiHI METOAN PO3paxyHKy OaraTOBHIpHHX PETyIIATOPIB, Ta 0OpaHO BapiaHT peryisTopa sk 0asy
ISl TopiBHAHHA. [IpuBeneHi KOHKpeTHI (GOpPMYIH PO3paxyHKy 3alpONOHOBAHOTO peryisropa. 3
TIOPIBHSIHHSI ITPOLIECIB B CUCTEMI YIIPABIIIHHS 110 BUXO/Y IPH OIMHUYHOMY 30ypeHHI 10 BXoay 00’ ekTa
npu BI/IKOpI/ICTaHHi 3allpOITIOHOBAHOTO Ta CHHTE30BAHOT'O 3a THUIIOBMM METOAOM ONTHUMaJIbHUX
PEryJIsTOpiB MOXKHa 3pOOMTH BHCHOBOK, IO 3alPONOHOBAHUN PEryJsITOp SIKICHO KOMIIGHCYE
30ypeHHs 1 Aae OLIbII IBUAKKN npotiec. OCHOBHOIO 0COOJIMBICTIO 3aITPONIOHOBAHOTO METO/IA € TO, 1110
Juisi 0araTOBUMIPHUX CHUCTEM 3 BEJIMKOI KUIBKICTIO BXOJIB 1 BHXOJIIB BiH CYTTEBO CIIPOILIYE
OOYHMCIICHHST PETyNATOPa, OCKUIbKH HE MOTpeOye PO3IIMPEHHS MaTpHlli CTaHiB 00’€KTa Ha YHCIIO
BXO/IiB TIpH Tlepeiadi MaTpullb B IPOrpaMU CUHTE3Y ONTHMAIbHUX PETYIISTOPIB.

KawuoBi ciaoBa. MIMO ontuManbHuii perynsitTop, IiHTerpajbHa CKJIaJ0Ba, HOBHHA METOJ
PO3paxyHKy, OOYHCIIOBAJIbHE CIPOIIEHHS CHHTE3Y.
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