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The current stage of development of processes and technologies requires continuous
improvement of computer hardware performance, efficient use of its resources,
processing of large amounts of data and support of the growing requirements of
modern information systems. When processing large amounts of data, it is often
necessary to use additional effective solutions to speed up information processing in
addition to parallel computing. One such approach is to use the SIMD mechanism.
The concept of SIMD instructions is a progressive solution for speeding up
computations in tasks with large amounts of data, due to the ability to perform one
operation on several data simultaneously. The purpose of the study is to evaluate the
effectiveness of using SIMD instructions to improve the performance of software
code execution when processing large data sets compared to traditional software
tools. The paper solves the following tasks: develop an algorithm for implementing
the classical task of multiplying ultra-large (up to 36x10° bytes) square data matrices
using the built-in Microsoft Visual Studio ISO/IEC C++20 <immintrin.h> library
with SIMD technology to parallelise the program at the data level; study the
performance of the developed algorithm when processing a significant amount of
data compared to the traditional approach. By implementing a modified matrix
multiplication algorithm using SIMD technology, it was possible to speed up the
computation on a PC with an Intel Core 17-12700H processor by 4.8 times with a
data volume of ~9x10° bytes. The obtained results will be taken into account in the
development of application software, including for efficient computer models of
technological processes and systems.

Keywords: SIMD, vector register, data-level parallelism, intrinsic function,
computing acceleration, big data, computer modelling.

Introduction. A significant role in modern programming, especially in computer
modeling, is the problem of computational efficiency and speed, which becomes notably
prominent during large data processing. There is a need to apply, in addition to parallel
computations, additional effective solutions to accelerate information processing. One
such approach is the use of the SIMD mechanism (Single Instruction, Multiple Data).
The SIMD concept has long been present in the architecture of modern PCs and
is used in processor technologies. It provides data-level parallelism, allowing one
operation to be performed on multiple data simultaneously, significantly increasing
program performance. Despite being an old concept, modern processors typically apply
SIMD extensions to enhance parallel computation performance.
Literature review. The SIMD instruction is an element of classification according to M.
Flynn’s taxonomy for parallel processors, proposed in 1966 and later expanded in 1972
[1]. Modern PCs use this architecture in the form of integrating special instruction sets
or command extensions to accelerate specific types of computations.
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SIMD extensions are considered one of the significant features of modern
general-purpose processors (GPPs), aimed at improving software performance with
minimal hardware modifications [2].

Different processor manufacturers, such as Intel, AMD, etc., have their own
Instruction Set Architecture (ISA) and SIMD microarchitectures. However, Intel has
significantly expanded SIMD technologies from both hardware and software
perspectives. In the context of microprocessor development, there is an increase in
register bit-width from 64 to 512 bits and an increase in the number of vector registers
from 8 to 32, providing more parallelism paths and reducing excessive data movement to
cache memory [2].

SIMD vector extensions have become an integral part of high-performance
processors. Various architectures, such as x86, ARM, MIPS, and PowerPC, have
specific instruction sets and microarchitectures for SIMD vector extensions. Applying
SIMD vectorization can significantly improve algorithm performance with minimal
overhead on equipment. This is especially important for optimizing computational
performance [3].

The «single instruction — multiple data» type of parallel processing (Fig. 1)
represents a parallel computing technology where one instruction is executed over
multiple data simultaneously [1-4].

Fig. 1. SIMD architecture diagram

The Data pool is responsible for storing all processed data. The Instruction pool
is responsible for storing executed instructions. The Vector unit is a key component of
the SIMD architecture. It consists of several processing units (PU), each of which can
process data in parallel. When a program runs on the SIMD architecture, the same
instruction is sent from the instruction set to each processing device in the vector block.
Each processing device then executes this instruction on different data from the set
simultaneously. This allows SIMD to efficiently process large volumes of data,
especially when one operation needs to be performed on each data element [1-4].
Accordingly, this technology finds its place in industries dominated by uniform
operations, especially if they are applied to large volumes of data: graphics, signal
processing, computer vision, computer modeling, etc.

A processor register used to store multiple data elements simultaneously in the
form of a vector is called a vector register. Typically, vector elements represent a
separate data value or component. Vector registers are part of SIMD hardware support,
allowing the execution of a uniform operation over all vector elements simultaneously.
They have a fixed width [5]. For example, a 128-bit vector register can store four float
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data type values. Thus, the size of the vector register determines the number of data
elements that can be stored in each register. Depending on the specific processor
architecture, support for different data types, including integers, floating-point numbers,
etc., is possible, and the number of elements can reach 4, 8, 16, or more. Examples of
vector registers from Intel include SSE (Streaming SIMD Extensions) and AVX
(Advanced Vector Extensions) [2-4]. There are also NEON registers in some ARM
processors [6].

SIMD technology is effective only in tasks where one operation can be applied to
a large amount of data simultaneously. In other cases, its efficiency is either reduced or
completely absent or negative. Among the disadvantages of SIMD, there is also a
dependence on the architecture, as SIMD instructions may vary depending on the
processor architecture, so a potential algorithm will work differently on different
hardware systems [2, 7].

Recent studies have proposed significant improvements to multimedia
applications aimed at increasing the performance, versatility, and programmability of
computing cores. This involves the implementation of a massively parallel matrix SIMD
core (CAMX) based on Content Addressable Memory, designed to work as an
accelerator for processor cores. Notably, the study confirms the efficiency of CAMX
with a detailed analysis of its operation during AES encryption [8].

Research in the field of graph computations using matrices also highlights the use
of SIMD extensions on multi-core processors for efficient execution of graph
algorithms. In particular, the graph algorithm compiler is adapted for the use of SIMD
extensions on processors, leading to a significant acceleration of the naive multi-
threaded implementation [9, 10].

To address the problem of sorting arrays containing a large amount of data, a
parallel sorting implementation for MIPS processors is possible, based on concrete
sorting networks and SIMD instructions [11].

Research Objective. The aim of this study is to evaluate the efficiency of using SIMD
instructions to enhance the performance of programs during the processing of large data
arrays compared to traditional software tools.

To achieve the set goal, the following tasks were formulated: Development of an
algorithm for implementing the classic problem of multiplying ultra-large square data
matrices using SIMD technology; Investigation of the performance of the developed
algorithm with a significant amount of processed data compared to the traditional
approach; Analysis of the obtained results and the development of a concept for the
effective use of modern computing systems and tools to increase the productivity of
computer applications.

Main Part. This work examines the evaluation of the efficiency of using SIMD
instructions to accelerate computations in tasks of processing ultra-large data arrays. The
research involves the development of a modified algorithm for solving the classic
problem of processing large data arrays using SIMD instructions and analyzing the
efficiency of applying this method compared to the traditional data processing approach.

One of the modern programming languages that provides and supports SIMD
instructions is C++. Here, this technology is used thanks to compiler specifications and
extensions, as well as through the use of specialized libraries.

For example, to use various sets of SIMD instructions from Intel, such as SSE,
AVX, AVX2, AVX-512, etc., in C++, one can use special data types:  ml128, m256,
~m512, etc. They represent vectors with 4, 8, or 16 elements of the corresponding type
[7].

At the same time, the Intel Intrinsics library provides special functions for generating
and using SIMD instructions [7]:
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— The mm add ps function is an intrinsic function (a special low-level function
that provides access to processor instructions) for performing addition operations on
several floating-point values in a vector register with a specified precision;

—The mm mul pd function is also intrinsic, designed to perform multiplication
operations on several double-precision floating-point values in a vector register.

In addition to the mentioned functions, there are many others, including
subtraction, division, comparison, data loading and saving, bitwise arithmetic, element
permutations, etc. Most of them can also define floating-point precision: single or
double.

To use the listed instructions, the built-in library <immintrin.h> is used. It
includes all Intel SIMD intrinsics, providing access to them. Also, for various SIMD
extensions, different libraries are used. For example, for SSE, you should connect the
header file <xmmintrin.h>, MMX is provided after connecting <mmintrin.h>, etc. But
connecting one of the header files that provide access to the use of various extensions
automatically connects all previous ones.

Thus, the variety of functions allows for the effective use of SIMD technology
for various tasks and operations, leading to a significant increase in the productivity of
computational tasks that support parallel data processing [7].

To maximize the power of processors with minimal development costs, it is
advisable to use the NSIMD library, which abstracts SIMD programming and provides
the following main paradigms [12]:

— Imperative programming provided by the NSIMD core and supports numerous
CPU/SIMD extensions;

— Expression templates provided by a separate module that supports all
architectures from the NSIMD core.

To achieve maximum performance, NSIMD uses optimized built-in compiler
functions. Therefore, using any basic compiler can provide a SIMD abstraction library
without significant costs. NSIMD supports work in all modern C++ programming
language standards [12].

Another example of SIMD extension in C++ is the OpenMP standard for parallel
programming, which supports the simd directive, which can be used to vectorize loops
thanks to the #pragma omp simd construct. In this case, the compiler can ignore vector
dependencies, considering the intention to execute several iterations simultaneously
[13].

The mentioned ways of using SIMD technology allow for accelerating
calculations by performing one operation on several data simultaneously.

For research purposes, an algorithm was developed to implement the classic
problem of multiplying ultra-large square data matrices using the built-in Microsoft
Visual Studio ISO/IEC C++20 <immintrin.h> library with SIMD technology for data-
level program parallelization; an analysis of the performance of the developed algorithm
was carried out with a significant amount of processed data compared to the traditional
data processing approach.

For the experiments, the following PC infrastructure was used: Intel Core i7-
12700H (14 cores, 2.3 GHz / 4.7 GHz); Goodram DDR4 (16 GB) x 2 = 32 GB;
Microsoft Windows 10.

Program testing was conducted for matrices of size 100—-3000, filled with random
float type values (4 bytes) using a 128-bit register. Using wider registers may not be
supported by some processors and requires more program resources. The obtained
results are presented in Table 1.
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Table 1
Computational Experiment Results
Matrix Data Size, .E.xecutlon Time, s Acceleration
Dimension bytes Tra(.htlonal S1MD a=sl/s2
Algorithm (s1) | Algorithm (s2)
100 4x10% 3,27x10* 1,3x10* 2,53
500 106 7,2x107 1,7x1072 4,24
1000 4x10° 0,854 0,195 4,38
1500 9x10° 2,89 0,604 4,78
2000 16x10° 10,18 2,88 3,53
2250 20,25%10° 19,09 6,14 3,11
2500 25x10° 30,96 8,97 3,45
2750 30,25x10° 48 14,55 3,30
3000 36x10° 79,64 24,53 3,25

With the increase in matrix size, and therefore the volume of processed data,
there 1s a natural increase in their processing time, regardless of the applied calculation
algorithm. The use of SIMD technology has significantly accelerated the execution of
calculations in all test cases and, especially, with a matrix dimension of 1500x1500
elements (data size 9x10° bytes).

Figure 2 shows that with an increase in matrix size in the range of 100—3000 float
type elements, the computational data processing time increases significantly — from 33
ms to 80 s with the traditional (STD) algorithm and from 13 ms to 24.5 s with the SIMD
algorithm.
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Fig. 2. Dependence of the implementation time of the compared algorithms on the
dimensionality of the data matrices.

The acceleration of calculations when using SIMD technology compared to
traditional data processing (Fig. 3) is between 2.53-4.78 and does not depend on the
volume of processed data. The highest acceleration (~4.8), as already mentioned, is
demonstrated by the modified algorithm with a matrix dimensionality of 1500 elements
(~9x10° bytes), which should be taken into account during the development of
application software.
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Fig. 3. Dependence of calculation acceleration due to the application of SIMD
technology on the dimensionality of the data matrices.

Thus, the research has proven the effectiveness of using SIMD technology for
solving tasks related to the processing of large volumes of data. The obtained data
correspond with the results of known studies [3, 5] on the issue of enhancing the
productivity of computer calculations using SIMD technology.

The use of the findings in conjunction with other alternative software tools to

enhance computational productivity [14, 15] will contribute to the development of
efficient computer models of technological processes and systems [16].
Conclusions. An algorithm has been developed to implement the classic problem of
multiplying ultra-large square data matrices using SIMD technology. The performance
of the developed algorithm was investigated with a significant amount of processed data
(up to 36x10° bytes) compared to the traditional approach. The effectiveness of using
advanced computing systems and SIMD-type tools to increase the productivity of
application computer programs during the processing of large data volumes has been
proven.

It has been established that the acceleration of calculations on a PC with an Intel
Core 17-12700H processor, due to the application of SIMD technology compared to
traditional data processing, is between 2.53—4.78 and does not depend on the volume of
processed data. The highest acceleration (~4.8) is achieved with a matrix dimensionality
of 1500 elements (~9x10° bytes), which should be taken into account during the
development of application software, including for efficient computer models of
technological processes and systems.
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Cy4acHuii eTanm po3BUTKY IPOILECIB Ta TEXHOJOTIH MOTpedye MOCTIHHOTO MiJBHUIIEHHS NPOAYKTHBHOCTI
KOMII'IOTEPHOT TEXHIKH, e()eKTHBHOTO BHKOPUCTAHHSA ii pecypciB, 0OpoOKM BEIMKHX OOCATIB JaHUX Ta
MATPUMKH 3pOCTAIOYMX BUMOT cydacHHX iH(opmanidHux cucrem. Ilix yac oOpoOKHM BEMMKUX 00CSATIB
JaHUX 4YacTO BHHUKA€ HEOOXiJHICTh 3aCTOCYBaHHS, OKpIM MapalelibHUX OOYHCIICHb, MOJATKOBUX
e(eKTUBHMX pIllIeHb JIsl IPUCKOPEHHs 00poOKku iH(popmaril. OAHUM 3 TaKUX MIAXOMIB € BUKOPHCTAHHS
Mexanizmy SIMD. Konnenmiss SIMD-iHCTpyKIi#i € HpOrpecCMBHUM DIlIEHHSM JUIsS TPHIIBUAIICHHS
O0YHCIIeHD Y 3a[a4aX 3 BEJIMKUM O0CSATOM JaHHX, 3aBASKH MOMKJIMBOCTI BUKOHYBAaTH OJHY ONEPALI0 Haj
JICKIIbKOMa JIAaHUMHU OJIHOYacHO. METOr0 JIOCHI/DKEHHSI € OIliHKAa eeKTUBHOCTI BukopuctanHs SIMD-
IHCTPYKIIIH JUTS TiIBUILEHHS MPOAYKTUBHOCTI BUKOHAHHS MPOIPAMHOTO KOJYy MiJ 4ac 00pOOKH BEITMKHX
MAaCHBIB JIaHUX Yy TOPIBHSHHI 3 TPaAUIIHHAMH TporpaMHHUMH 3acobamu. B po0OoTi BHpilleHI HACTYIHI
3a1a4i: po3po0JIeHo AITOPUTM peallizallii KIacHYHOI 3a1a4i IepeMHOKEHHS HaBeIUKuX (1o 36x10° Gaiir)
KBaJ[paTHUX MATPHIlb JaHHUX 13 BUKOPHCTaHHIM BOymoBaHOi 0i0mioTeku Microsoft Visual Studio ISO/TEC
C++20 <immintrin.h> 3 Texnomnorietro SIMD s posmapanentoBaHHS NpPOrpaMyd Ha pPIiBHI JIaHUX;
JOCTIDKEHO TPOMYKTUBHICTP BHKOHAHHSA PO3POOJIEHOTO ajlropuTMy TpPH 3HAYHIN  KUIBKOCTI
00poOIOBaHNX JaHWX Y MOPIBHSAHHI 3 TPaAWLiHHUM MiAXOIOM. PO3POOJIEHO alrOpuTM peajizarii
KIIACHMYHO{ 3a/1a4l MepeMHOKEHHSI HaJIBEIMKNX KBAaJPATHUX MaTPHIb JaHUX 13 BHKOPUCTAHHSAM; BUKOHAHO
aHai3 TPOMYKTHBHOCTI PO3POOJICHOTO alNTrOPUTMY IPH 3HAYHINA KIMBKOCTI OOpOOIIOBAHMX HaHUX Yy
TOPIBHAHHI 3 TPAAWIIHHUM TMiIX0AOM 10 00poOkm maHmx TecTyBaHHS MPOTpaMHOTO 3a0e3medeHHS
MIPOBOAMIIOCH LTS MaTpuIlh po3MipHicTio 100—3000, 3ar10BHEHNX BUITAKOBIMHY 3HaUeHHAME TUTy float (4
Oaiiti) 13 BuKopucTaHHAM 128-6itHOoro perictpy SIMD-apxiTekTypu. 3a paxyHOK BIIPOBaIKECHHS
MOJM(iKOBAaHOTO ANTOPUTMY MEPEMHOKEHHS MAaTpULb 3 BHKOPHCTaHHAM TexHoiorii SIMD Bnmanocs
MIPAMIBHNINTH BUKOHaHHA obOuncieHb Ha PC 3 mpomecopom Intel Core i7-12700H y 4,8 pasu mpm
obcsirax 06poOmoBaHuX JaHux ~9x10° Gaiit. OTpumani pesynbrard OyAyTh BPaxOBYBATHCA IIiJ 4ac
PO3pOOIICHHST TIPUKJIATHOTO MPOrPaMHOro 3a0e3MeUYeHHs], Y TOMY YUCIi T e(peKTUBHUX KOMIT IOTEPHUX
MoJieJIel TEXHOJIOTTYHHX MPOLIECIB Ta CUCTEM.

Karwuosi cioBa: SIMD, BekTOpHUil pericTp, mapajeni3M Ha piBHI JaHUX, IHTPUH3WYHA (YHKILis,
NPUILBUAIICHHS 004MCIIeHb, BEJIHKI AaH1, KOMIT FOTEpPHE MOJICIFOBAHHS
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