R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

DOI10.15276/imms.v14.n03.134 Informatics and Mathematical Methods in Simulation
UDK: 681.518 Vol.14 (2024), No. 3, pp. 134-145

A METHOD FOR IMPROVING THE QUALITY OF IMAGE ANNOTATION IN
SEMANTIC MONITORING GIS OF BUSINESS PROCESSES

R.M. Pasichnyk, L.V. Babala, M.V. Machuliak

West Ukrainian National University
11, Lvivska Str. Ternopil, 46009, Ukraine
Emails: Roman.pasichnyk@gmail.com, Ludaduma7@gmail.com, Mvmach9@gmail.com

This article addresses the pressing issue of automating the image labeling process for
computer vision systems in agriculture. The authors investigate methods for creating image
datasets and configuring parameters for image classification models using neural networks
based on the TensorFlow framework. The scientific significance of the work lies in
developing new approaches to automated collection of thematic image collections and
formalizing the methodology for parametric training of classification models. The practical
value of the research is expressed in improving the efficiency of the image labeling process
for geoinformation systems in the agricultural sector. The research methodology includes
analyzing existing approaches to image labeling, developing an algorithm for automated
formation of thematic image collections, formalizing a method for parametric training of the
classification model, and experimental verification of the proposed approaches. Main results
of the work: 1. An algorithm for automated formation of thematic image collections has been
developed. 2. A method for parametric training of the image classification model using the
TensorFlow framework has been formalized. 3. The dependence of classification accuracy
on the size of the training sample and image augmentation parameters has been
experimentally established. The study showed that with optimal selection of augmentation
parameters and using 48 images per label in the training sample, it is possible to reduce the
classification error to an acceptable level of 8%. The work makes a significant contribution
to the development of automated image processing methods for agricultural geoinformation
systems. The practical significance of the results lies in improving the efficiency of
monitoring and management processes in the agricultural sector.

Keywords: computer vision, image labeling, neural networks, TensorFlow, geoinformation
systems, agriculture, image classification.

Introduction. Modern agriculture faces the challenge of increasing production efficiency while
reducing negative environmental impact. In this context, Geographic Information Systems
(GIS) serve as a powerful tool revolutionizing the agricultural sector. GIS allows processing
large volumes of geospatial data, creating detailed field maps, and analyzing various factors
affecting plant growth, which in turn facilitates informed decision-making in agricultural
production.

Particular attention in this study is given to the integration of computer vision methods
into GIS for analyzing data obtained using drones. This technology allows for automatic
identification and classification of objects in images, which significantly increases the
efficiency of monitoring agricultural lands.

The article will examine modern approaches to implementing computer vision systems,
particularly the application of convolutional neural networks, which provide hierarchical
learning of features from basic (edges, corners) to complex (specific objects of interest).

Neural networks are an effective means of image classification. However, when using
this apparatus, a number of difficulties arise. These lie in the great variety of network
architectures and model training methods. The situation has been simplified with the
introduction of the TensorFlow framework, where recommendations have been developed for
certain subject areas regarding the choice of network architectures, methods for their rapid
implementation, and effective training. However, researchers still face open questions about

134

mailto:Roman.pasichnyk@gmail.com
mailto:Ludaduma7@gmail.com
mailto:Mvmach9@gmail.com

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

selecting model parameters and automating the formation of image collections for model
training. This work is dedicated to the study of these issues.

Fig. 1 shows the structure of the automated monitoring system for agricultural business
processes:

Geospatial data collection

)
Data processing in GIS

|

l

Creation of field maps Crop monitoring Work planning
i . Problem detection Coordination of
Optimization of crop
placement machinery and personnel
¥ ¥ ¥
Increasing yield Timely|response Efficient uze of
TEL0UFCEs

'

Improvement of agricultural
production

Fig. 1. Automated monitoring systems for agricultural business processes

Literature Review. Among the basic publications in the chosen research direction, we
highlight reviews of approaches to image labeling problems [1] [2] [3] and approaches to
building a system of semantic classes based on image segmentation [4], improving
classification quality using cross-entropy similarity loss function [5], and building a semantic
dictionary for image classification using deep learning methods [6].

In [1], basic approaches to forming semantic labels based on a keyword dictionary that
solve the task of assessing the nature of images in the required aspect are analyzed. As these
approaches are labor-intensive, various methods were used to reduce manual annotation costs.
Three different types of image annotation are highlighted: free text annotation, keyword
annotation, and ontology-based annotation.

Keyword annotation involves annotating images using a list of related keywords. There
are two options for choosing keywords. In particular, this includes using arbitrary keywords, as
well as using words from a predefined list. This information can be provided at two levels of
specificity: firstly, a list of keywords related to the full image, listing what is depicted in the
image. Secondly, image segmentation along with keywords associated with each segmentation
area. Additionally, keywords describing the whole image can be provided. Often, segmentation

135

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

consists simply of a rectangular area drawn around the area of interest, or dividing the image
into foreground and background pixels.

Ontological annotation is used when formed ontologies that cover a given subject area
are available. For example, in the field of image description, ICONCLASS is a very detailed
ontology for researching and documenting iconography images, designed to index or catalog
the iconographic content of works of art, reproductions, literature, etc., and contains over
28,000 definitions organized in a hierarchical structure. Each definition is described by an
alphanumeric code accompanied by a textual description.

For arbitrary text annotation, the user can use any combination of words or sentences.
This facilitates annotation but complicates the use of annotation later for image search. Often
this option is used in addition to keyword selection or ontology. Any concepts that cannot be
adequately described using keyword selection are simply added in free-form description.

In [2], the search process in a system of medical articles is investigated. The developed
labeled image dictionary is considered as the base vocabulary, images from which are compared
with images from the analyzed document. Two image matching methods have been developed:
one based on image intensity projections on coordinate axes, and the other on normalized cross-
correlation. If image similarity thresholds are not reached, the analyzed image is skipped.

In [3], it is noted that to ease the load of manually labeling a large number of images,
certain parts of the process can be automated where a computer vision algorithm performs
preliminary annotation, and then a human user reviews and corrects the proposed labels.
Accordingly, the human's role changes to supervision with the sole tasks of filtering, selection,
and updating.

In the development of automated labeling, the methodology of interactive labeling is
used, which is part of the "human-in-the-loop" methodology. Its goal is to reduce the limitations
of fully automated labeling through purposeful interaction with the user. The method allows
the user to label an initial batch of examples, trains a model, and then constantly asks the user
for corrections. A developed strategy of active user feedback is used, which minimizes errors
in subsequent labeling iterations and maximizes the expected information gain.

Works [4]-[6] are devoted to image labeling using semantic classes. In publication [4],
the main idea is to identify areas that provide stable classification using an entropy measure.
Minimizing entropy for different image segments gives its representation as a region adjacency
graph. For each test image, generated contextual information is represented by a co-existence
matrix.

In [5], the average similarity between the prediction and given labels is considered as a
measure of semantic similarity in classification. With this type of evaluation, analysis of the
loss function, which includes both cross-entropy similarity loss and deep feature loss, can
improve the semantic similarity between the prediction and actual labels. It is shown that by
analyzing the loss function, a model that produces more accurate predictions can be obtained.
It is shown that cross-entropy similarity loss improves superclass similarity. It is proved that
the average vocabulary similarity, which is a more accurate indicator, is also improved.

In [6], it is shown that although objects in the foreground of single-label images are one-
level, this assumption is usually incorrect for multi-label images. Moreover, the different
composition and interaction between objects in multi-label images also increases the
informativeness of classifying such images. It is noted that multi-label image classification is
more practical and complex than single-label image classification.

The paper presents a new end-to-end approach to multi-label image classification called
Deep Semantic Dictionary Learning (DSDL), which considers the problem of multi-label image
classification as a dictionary learning task. It uses an autoencoder to generate a semantic
dictionary aligned with visual space, with class-level semantics. Unlike traditional approaches
to multi-label image classification, DSDL not only uses correlations between label and vision
spaces but also aligns relationships between label, semantic, and vision spaces.

136

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

Thus, some basic approaches to image labeling have been considered. Based on their

generalization, we will form an approach to the announced automatic labeling within the
framework of a geographic information system.
Semantic Label System. From the analysis of literature sources, it can be established that the
basic methods of automatic labeling are based on autocorrelation image comparison or using
artificial neural networks. In our view, neural networks are a more flexible tool that well
supports the adaptation of the approach to detected deviations in semantic classification.
Therefore, we prefer image labeling methods based on neural networks.

In particular, deep neural networks, especially convolutional neural networks (CNN),
have achieved significant success in this field. Machine learning frameworks greatly simplify
the process of creating and training neural networks. They provide ready-made tools,
optimizations, and interfaces for interacting with data and models. In this regard, TensorFlow
is one of the most popular machine learning frameworks developed by Google. It is particularly
well-suited for working with deep neural networks, including convolutional neural networks.
This involves the following main steps of using TensorFlow for image classification: data
preparation, model formation, training, validation, and testing.

Storing trained models and quickly using them at the right moment with linking to
corresponding geographical locations requires the development of a specialized geographic
information system. Let's outline its basic structures that emerge from the types of information
we plan to store.

From this perspective, we present the information models Im of the geographic
information system being created as follows:

Im = (Bt,Ls,Gl,Md, Trs, Tss, Mit) (1)
where Bt - is the type of business process, Ls - is the image labeling system, G! - is the
geographic localization of the business Md - process, Trs - is the description of the method for
building the image classification model, T'ss - is the set of images for training, Mit - is the set
of images for testing, are the types of images that the model classifies incorrectly.
Bt = (1dBt, NmBt) (2)
where, IdBt - is the business process identifier, NmBt - is the name of the business
process.
Ls = (IdLi, NmLi,Pr_IdLi,IdBt) 3)
where, IdLi - is the labeling element identifier, NmLi - is the name of the labeling
element, Pr_IdLi - is a reference to the parent element of the hierarchy (identifier of the
corresponding labeling element).

Gl = (IdLoc, NmLoc) 4)

where, IdLoc - is the location identifier, NmLoc - is the name of the location.
Md = (IdMd, TxtMd, IdBt) (5)
where, IdMd - is the method identifier, TxtMd - is the textual description of the method.
Trs = (I1dTrs,TrPath,TrVol, Df,1dLi, IdBt) (6)

where, IdTrs - is the identifier of the training image set, TrPath - is the path to the
training image set, TrVol - is the volume of images in the training image set, Df - is the date
and time of the image set formation.
Tss = (1dTss,TsPath,TsVol,Df,IdLi,IdBt) (7
where, IdTss - is the identifier of the testing image set, TsPath - is the path to the
training image set, TsVol - is the volume of images in the testing image set.
Mit = (IdMit,IdLoc,1dLi, IdBt) (8)
where, IdMit - is the identifier of the types of images that the model classifies incorrectly.
Method of Image Set Formation. After building structures for storing information, let's
consider preparing a collection of images for training the neural network. We will start by
building a list for labeling images from the subject area, entering it into the Ls structure. To
build an image labeler for this subject area, we form a collection of images that will contain
sets of images for each element of the constructed list. In the case of drones availability, the

137

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

image collection can be built from observations of objects that need to be labeled. If the system
is just being formed, we create the image collection by extracting them or scraping them from
the Web network.

Image scraping is the process of automatically collecting images from web pages. The
Python library Beautiful Soup is often used for image extraction. It is characterized by ease of
use, can work with various HTML and XML formats, and provides a wide range of methods
for searching, navigating, and manipulating DOM elements.

To use the Beautiful Soup library, it is necessary to specify a Web page that contains
suitable images for extraction. It can be selected by analyzing the output of a Web - search
engine for a term query in the NmLi image category.

Presenting the algorithm for scraping images from a multi-page structure in the form of
certain stages. In particular, in the first stage, we set the tool, source, and parameters of scraping.
In the second stage, we load the contents of the selected number of pages from a certain source
and select the contents of image tags for a certain class from it. In the third stage, we select
unique links to images from the selected tag content. And finally, in the fourth stage, we record
images in a specified folder with corresponding names. Let's detail the implementation of these
stages using the following steps and operators.

1. We form driver - the constructor of the webdriver.Chrome() class from the selenium
library, which initializes a new instance of the web driver for the Chrome browser:

driver = webdriver.Chrome() 9

2. We fix url - a link to the site chosen for downloading and the npages we aim to
download.

3. We fix class - the css class of image tags that contain links to the needed images

4. We organize a loop for the number of pages to download:

for page inrange(pagel,npage + 1) (10)
5. We form url_page - a link to the next page:
url_page = url+"?page =" + str(page) (11)
6. Getting the contents of the next page:
driver. get(url_page) (12)

7. We analyze the contents of the page using an HTML parser and build a DOM -
document object model:

content = driver.page_source (13)
soup = BeautifulSoup(content,"html.parser") (14)
8. Loop through the elements of the image tag (IMG) with the specified class:
forimage in soup. findAll("img",{"class" : class}) (15)
9. Selecting a link from an element if it has not been used yet:
if image|['src’] not in results: (16)
results.append(image('src']) (17)
10. Loop through elements from downloaded images:
for b inresults: (18)
11. Getting an image by link:
image_content = requests. get(b).content (19)
image_file = io.ByteslO(image_content) (20)
image = Image.open(image_file).convert("RGB") (21)

12. Writing the image to a specified folder with a numerical name in the order of
download:
file_path = Path("tractors _plow?2", str(numb).zfill(length) + ".png")

(22)
image.save(file_path,"PNG", quality = 80) (23)
numb = numb + 1 (24)

138

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

Method Training Model Classification Image. We plan image scraping to have sufficient
images for forming training and test sets for each marker NmLi of a specific business process
NmBt. Thus, we create folders for individual business processes NmBt with subdirectories for
text markers NmLi within them. For each marker, we form image directories for training Tr
and testing Ts with corresponding volumes TrVol and TsVol. The number of such directories
can be expanded with a link to the date and time of formation Df. Thus, paths to image
directories for training Pitr(NmBt,NmLi,Df) and testing Pits(NmBt,NmLi,Df) are formed,
which are recorded in the information system:
TrPath = Pitr(NmBt, NmLi,Df), (25)
TsPath = Pits(NmBt, NmLi, Df). (26)

After forming or replenishing sets of image directories, it is necessary to build and train
the model according to a specific algorithm, which can be presented as the following sequence
of stages. In the first stage, we set the values of the main algorithm parameters and form a
dataset for model training. In the second stage, we create data processing pipelines that shuffle
elements in the training and validation datasets. In the third stage, we create a neural network
model for classification with random image transformations. In the fourth stage, we set the
parameters of the method that regulates the learning process, carry out the learning process, and
save the resulting model. The stages are implemented through the following steps:

1. Set the number of epochs, i.e., cycles during each of which the model uses each data
sample once, and the extracted_dir directory containing photos for training, the fraction of data
vs that will be allocated for the validation set

extracted_dir = TrPath(NmBt, NmLi,Df) 27

2. Create a path object that represents the path to the directory from which images will be

obtained
data_dir = pathlib. Path(extracted_dir) (28)
3. Create a dataset of images from the directory containing photos for training and
validation
train_ds = tf.keras.utils.image_dataset_from_directory(data_dir,
validation_split = vs, subset = "training", seed = 123, (29)
image_size = (img_height,img_width), batch_size = batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(data_dir,
validation_split = vs, subset = "validation", seed = 123, (30)
image_size = (img_height,img_width), batch_size = batch_size)
where the function tf. keras.utils.image_dataset_from_directory expects images to be
organized in subdirectories, each corresponding to one class. Subdirectory names will be used
as labels for images. The function recursively traverses the specified directory, loads all images
and converts them into tensors that can be used for neural network training. All loaded images
and their labels are combined into a Dataset object that can be used for iteration and feeding
data into the model;

validation_split determines the fraction of data vs that will be allocated for the
validation set;

subset specifies which part of the data to return: training or validation;

seed is used to set the initial value of the random number generator. If we set the same
seed value for different runs, the data will be divided into training and validation sets in the
same way;

batch_size defines the size of the data batch, i.e., a subset of data that is fed into the
model simultaneously for gradient computation and weight updates. A larger batch size usually
allows using larger mini-batch sizes, which can speed up training.

4. Increase the dimension of each element in the train_ds dataset. If previously each
element was a pair (image, label), now it will become a triple (image, label, two identical
integers).

counter = tf.data.Dataset.counter() (31)

139

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

train_ds = tf.data.Dataset.zip((train_ds, (counter, counter))) (32)

where tf.data. Dataset.counter() creates simple datasets for testing or debugging

models, used to create an infinite dataset where each element is a sequential integer starting
from O;

tf.data.Dataset. zip() combines elements from two or more datasets into one new
dataset. Elements from corresponding positions in the original datasets will be joined into
tuples. A new dataset train_ds is created, which contains tuples of three elements: an image
from the original train_ds set, the first integer from the counter set, and the second integer from
the counter set. These additional integers can be used as indices for elements in the batch for
learning algorithms.

5. We create data processing pipelines that shuffle elements in the train_ds and val_ds
datasets, apply augmentation to increase data diversity for the training set, combine data into
batches for efficient learning, and prefetch batches in advance to minimize model downtime

train_ds = (train_ds
.shuffle(1000)
.map(augment) (33)
.batch(batch_size)
prefetch(tf.data. AUTOTUNE))
val_ds = (wval_ds
.map(resize_and_rescale,num_parallel_calls = tf.data. AUTOTUNE)
.batch(batch_size)) (34)
.prefetch(tf-data. AUTOTUNE))
6. We describe a sequence of transformations for images that will be applied during model
training, which will randomly change images in each training epoch
data_augmentation = keras.Sequential([
layers. RandomFlip("horizontal",
input_shape = (img_height,img width, 3))
layers. RandomRotation(alf1), (35)
layers. RandomZoom(alf2),]))

There keras. Sequential() creates a sequential model where each layer is applied to the
output of the previous one;

layers. RandomFlip("horizontal") randomly flips the image horizontally;

input_shape indicates the shape of input images (height, width, number of channels).

layers. RandomRotation(alf 1) randomly rotates the image by an angle from -alf1 to
alf1 degrees.

layers.RandomZoom(alf2) randomly increases or decreases the image scale by a
value from —alf2% to alf2%.

7. We create a sequential neural network model for image classification, consisting of
several layers

model = Sequential([
data_augmentation,
layers.Rescaling(1./255),
layers.Conv2D(16, 3, padding='same’, activation="relu’),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same’, activation="relu’),
layers.MaxPooling2D(), (36)
layers.Conv2D(64, 3, padding='same’, activation="relu’),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Flatten(),
layers.Dense(128, activation="relu’),
layers.Dense(num_classes)])

140

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

There keras. Sequential() creates a sequential model where each layer is applied to the
output of the previous one;
data_augmentation - this layer (which we've already discussed) applies random
transformations to images for data augmentation;
layers. Rescaling(1./255) - normalizes pixel values of images to the range 0-1. This is
important for most neural networks;
layers.Conv2D(16,3,padding = 'same’, activation = 'relu’) - applies a two-
dimensional convolution with 16 filters of size 3x3;
padding = 'same’ - ensures that the output image size remains the same as the input;
activation = 'relu’ - applies the ReLU (Rectified Linear Unit) activation function to the
output values;
layers. MaxPooling2D () - the model contains two more convolution and pooling layers
with a larger number of filters, allowing the model to extract more complex features from
images;
layers. Dropout(beta) - randomly turns off a fraction beta of neurons in this layer
during training. This helps prevent overfitting;
layers. Flatten() - transforms a three-dimensional tensor (height, width, channels) into
a one-dimensional vector;
layers. Dense(128, activation = 'relu’) - applies a connected layer with 128 neurons
and ReLU activation, allowing the model to extract abstract features;
layers. Dense(num_classes) - applies the last connected layer with the number of
neurons equal to the number of classes. The output of this layer will be used for image
classification.
8. Setting the optimizer, loss function, and metrics for model training
model.compile(optimizer="adam,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 37)
metrics=/["'accuracy'])
There optimizer = 'adam’ - a method that regulates the learning process by changing
the weights of the neural network to minimize the loss function;
tf.keras.losses.SparseCategoricalCrossentropy - a loss function for classification
tasks that measures how well the model predicts results on training data;
metrics = ['accuracy'] - the simplest metric that shows the percentage of correctly
classified samples, which allows evaluating the quality of the model during training and
validation.
9. Initiate the neural network training process
history = model fit(train_ds, validation data=val_ds, epochs=epochs) (38)
with training sample train_ds, validation sample val ds, and the number of epochs of
training sample passes during one iteration.
10. Save the result of model training in the file mt
model. save(mt) (39)
Thus, IC (data_dir,vs,alf1,alf2,beta) (formalizes the process of building and
training an image recognition and classification model in the Tensorflow package, the main
parameters of which are the set of training image data_dir directories, the fraction of images
vs that will be allocated for the validation set, the limits alf1 of random image rotation, the
limits alf2 of random image scaling, the fraction beta of randomly turning off network neurons
during training.
Experimental Results. We experimentally assess the quality of the built image classification
model and its adaptation to the proposed data. In the first stage, if necessary, we adapt the list
of semantic labels to the set of images selected for training. If the quality of image recognition
for a certain semantic label is sufficiently low, this label is subordinated to the one closest to it
semantically. In the second stage, we optimize the accuracy of the image labeling model by

141

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

selecting the parameters of the model training algorithm and, if possible, adjusting the volume
of the training set for image classification.
Let's consider the process of labeling images of field cultivation in an agricultural
enterprise. Let the system of semantic labels be defined by the following one-level list:
NmlLi = [tractors_plow, tractors_cultivation, tractors_seeding, 40
tractors_watering_plants, tractor_cutting_grass,combining]| (40)
In the first stage, we download classified images from Web resources, for example, from
the site https://www.istockphoto.com. First, using a thematic query, we find Web sites of
thematic images with the ability to select photos based on queries that correlate with semantic
labels. We form such a set of images using the described method of forming an image set, in
particular using the css class "yGhOCfFS4AAMLWJEE9OW7v". The volume of downloaded
collections should be selected as significant; in this example, volumes of 1200 photos were set.
Unfortunately, when viewing the collapsed images, it turns out that not all of them correspond
to the queries based on which they were selected by the Web site. Therefore, automatic
downloading should be supplemented with visual manual filtering. This is a labor-intensive
process, so we aimed to form collections for semantic labels in volumes of 12, 24, or 48
specimens, calculating that these sets will be divided into training and validation parts. In the
next stage, we train the corresponding neural networks according to the described algorithm.
Randomly selected image samples used for training are shown in the following figure.

6_combine_2 2_tractor_cultivation 1 tractors_plow2

3 _tractor_seeding

LAl

1 tractors_plow2 1 tractors_plow2

T Ty

Fig. 2. Sample images used for training

The quality of training was evaluated using test samples that were not used for training.
They were formed from the set of downloaded images with a volume of 5 and 10 images per
semantic label.

It was established that the classification accuracy primarily depends on the size of the
training sample as well as on the parameters of image collection augmentation during training.
The main results of the calculations are presented in the following table.

142

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

Image Classification Accuracy

n TrVol | |NmLi| al a2 &(%)
1 12 6 0.3 0.3 43
2 12 6 0.4 0.4 63
3 12 6 0.5 0.5 58
4 24 5 0.2 0.2 26
5 24 5 0.3 0.3 18
6 24 5 0.4 0.4 38
7 48 5 0.2 0.2 32
8 48 5 0.1 0.1 18
9 48 5 0.05 0.05 8

Table 1.

In the table, TrVol denotes the size of the training sample, |[NmLi| - the number of
semantic labels in the model, al, a2 - parameters of image collection augmentation during
training, € - relative error obtained when testing the model. The presented results indicate a low
level of classification accuracy with small training sample sizes. Poor differentiation of the
semantic label tractors_seeding was also recorded, which had to be combined with the label,
tractors_cultivation leading to a reduction in their number from 6 to 5. With a successful
selection of augmentation parameters and using 48 images per label in the training set, it was
possible to reduce the classification error to an acceptable level of 8%. The dynamics of errors
of the image classification model during its parameter selection are shown in the following

figure. Only one level of recorded errors can be considered acceptable.

70
A
60 Y
LN
ALY
\ \\\
\ N
50 N
\\
\ \

40 \ \\ \\

N\
\\ Thll
\ -----------------
\ —
30 ‘

‘\
‘\
\\\
20 == -

\---~-“
10

O T T T T

0 10 20 30 40

Fig.3. Dynamics of errors of the image classification model during its tuning

Conclusions.The paper investigates the issue of automating the formation of image collections
and the formation of a methodology for tuning the parameters of the image classification model

143

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

using neural networks with the TensorFlow framework. An algorithm for automated formation
of a thematic image collection is proposed. A method of parametric training of the thematic
image classification model using the TensorFlow framework is also formalized. Experimental
studies have confirmed the effectiveness of the proposed approaches.

1.

2.

144

References
Hanbury A. A survey of methods for image annotation. Journal of Visual Languages and
Computing. 2008. No.19. P. 617-627.
Chachra S.K., Xue Z, Antani S., Demner-Fushman D., Thoma G.R. Extraction and
Labeling High-resolution Images from PDF Documents. Lister Hill National Center for
Biomedical Communications Bethesda, MD: U. S. National Library of Medicine,2023.
20894
Sager Ch., Janiesch Ch., Zschech P. A survey of image labelling for computer vision
applications. Journal of Business Analytics. 2021. V.4. No.2, P. 91-110, DOI:
10.1080/2573234X.2021.1908861
Kluckner S., Mauthner T., Roth P.M., Bischof H. Semantic Image Classification Using
Consistent Regions and Individual Context. URL:
https://www.researchgate.net/publication/
221259742 Semantic Image Classification Using Consistent Regions and Individual
_Context
Yu.Y. Learning Semantics of Classes in Image Classifcation. URL:
https://www.zora.uzh.ch/id/eprint/259312/1/yu2023master.pdf
Zhou F., Huang S., Xing Y. Deep Semantic Dictionary Learning for Multi-label Image
Classification. URL: https://cdn.aaai.org/0js/16472/16472-13-19966-1-2-20210518.pdf

[HOOPMATHKA TA MATEMATMYHI METO/I1 B MOZEJIFOBAHHI = 2024 = Tom 14, Ne 3

METOI INIABUINEHHA AKOCTI POSMITKH 30bPA’KEHb CEMAHTHYHOI'O
MOHITOPUHI'Y BIBHEC-ITPOLECIB I'IC

P.M. Ilaciunuk, JI.B. bab6ana, M.B. Mauynsik

3axigHOYKpaTHCHKHI HAIllOHAIBHUHN YHIBEpCUTET
11, JIsBiBCchKa, M. TepHomins, 46009, Ykpaina
Emails: Roman.pasichnyk@gmail.com, Ludaduma7@gmail.com, Mvmach9@gmail.com

CraTTa TpHCBSYCHA aKTyaslbHiM mTpoOieMi aBTOMaTH3allii TpOIECy MapKyBaHHS 300pakeHb IS CHCTEM
KOMIT'FOTEPHOTO 30py B CUTBCBKOMY TOCIIOAApCTBi. ABTOPH JOCHKYIOTH MeETOOW (GOpMyBaHHA HaOOPiB
300pakeHp Ta HaJAIITYBAaHHS MapaMeTpiB Mojened kimacudikamii 300pakeHb 3 BUKOPUCTAHHSIM HEHPOHHUX
Mepex Ha 0a3i PpeiimBopky TensorFlow. HaykoBa 3Hagymiicte poOoTH mossrae y po3poOri HOBHX IiIXOdIB 10
AaBTOMATH30BAaHOTO 300py TEMATHYHHX KOJIEKIiH 300pakeHp Ta (opmamizamii METOAWKH IMapaMeTpUIHOTO
HaBYaHHS MoJeseil kinacugikauii. [IpakTndHa HiHHICT TOCHTIPKEHHSI BUPAXKAETHCS y MiABUIIEHHI €()eKTUBHOCTI
npolecy MapKyBaHHS 300pakKeHb JUIsl reoiH()OPMALITHUX CUCTEM Y CLITBCHKOTOCIIONAPChKii raimysi. MeTomosoris
JOCHI/DKEHHST BKJIIOYAa€ aHalli3 ICHYIOYMX MiJXOMIB 10 MapKyBaHHS 300pa)keHb, PO3POOKY alrOpUTMY
ABTOMATH30BaHOTO (POpMyBaHHSI TEMAaTUYHHUX KOJEKLil 300paxkeHb, (opmaizalilo METOLy MapaMeTpHYHOrO
HaBYaHHS MojeNni Kiacudikamii Ta eKCIepUMEHTalbHY IIepeBIpKy 3alpoIlOHOBaHMX MiaxoaiB. OCHOBHI
pesynpratd pobotu: 1. Po3poOneHo anropuT™M aBTOMATH30BAaHOrO (OPMYBAaHHS TEMATHYHHX KOJICKIIN
300pakeHs. 2. dopmanizoBaHO METO] MMapaMETPUYHOTO HABYaHHA Mozeni Kiacuikamii 300paxeHb 3
BUKOpHCTaHHAM (¢peiimBopky TensorFlow. 3. EkcneprMeHTanpHO BCTAaHOBJICHO 3alIeKHICTH TOYHOCTI
kinacudikamii BiJ po3Mipy HaBYaJIbHOT BUOIPKH Ta apaMeTpiB ayrMeHTanii 300paxkeHsb. JJociimKeHHs TT0Ka3ao,
II0 TIPH ONITUMAIIFHOMY TiI00pi MapaMeTpiB ayrMeHTalii Ta BUKOPUCTaHHI 48 300paskeHb Ha MITKY B HABUAIBHIN
BUOIpIIi MOXKJIMBO 3HU3UTH MMOMWIKY Kiacudikamii go nmpuitHaTHOTO piBHA 8%. PoO0Ta BHOCHTH 3HAUHHI BHECOK
Yy PO3BUTOK METOMIB aBTOMAaTH30BaHOI 00pOOKM 300pakeHb ISl CLIHCHKOTOCHOAAPCHKUX TeOiH(POPMALiHHIX
cucreM. [IpakTnyHe 3HAa4YEeHHsS Pe3yNbTATIB MOJAATAaE Yy IMiJBUIICHHI €(QEKTHBHOCTI NMPOLECIB MOHITOPUHTY Ta
YIPAaBJIHHS B arpapHOMY CEKTOPI.

KuarouoBi ciioBa: komm'totepHuid 3ip, MapKyBaHHS 300pakeHb, HeiipoHHi Mepexi, TensorFlow, reoindopmaniiini
CHCTEMH, CLIBChKE TOCIONAPCTBO, KIacU]iKallisi 300pakeHb.

145

