
R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

134

DOI 10.15276/imms.v14.no3.134

UDK: 681.518

 Informatics and Mathematical Methods in Simulation

Vol.14 (2024), No. 3, pp. 134-145

A METHOD FOR IMPROVING THE QUALITY OF IMAGE ANNOTATION IN

SEMANTIC MONITORING GIS OF BUSINESS PROCESSES

R.M. Pasichnyk, L.V. Babala, M.V. Machuliak

West Ukrainian National University

11, Lvivska Str. Ternopil, 46009, Ukraine

Emails: Roman.pasichnyk@gmail.com, Ludaduma7@gmail.com, Mvmach9@gmail.com

This article addresses the pressing issue of automating the image labeling process for

computer vision systems in agriculture. The authors investigate methods for creating image

datasets and configuring parameters for image classification models using neural networks

based on the TensorFlow framework. The scientific significance of the work lies in

developing new approaches to automated collection of thematic image collections and

formalizing the methodology for parametric training of classification models. The practical

value of the research is expressed in improving the efficiency of the image labeling process

for geoinformation systems in the agricultural sector. The research methodology includes

analyzing existing approaches to image labeling, developing an algorithm for automated

formation of thematic image collections, formalizing a method for parametric training of the

classification model, and experimental verification of the proposed approaches. Main results

of the work: 1. An algorithm for automated formation of thematic image collections has been

developed. 2. A method for parametric training of the image classification model using the

TensorFlow framework has been formalized. 3. The dependence of classification accuracy

on the size of the training sample and image augmentation parameters has been

experimentally established. The study showed that with optimal selection of augmentation

parameters and using 48 images per label in the training sample, it is possible to reduce the

classification error to an acceptable level of 8%. The work makes a significant contribution

to the development of automated image processing methods for agricultural geoinformation

systems. The practical significance of the results lies in improving the efficiency of

monitoring and management processes in the agricultural sector.

Keywords: computer vision, image labeling, neural networks, TensorFlow, geoinformation

systems, agriculture, image classification.

Introduction. Modern agriculture faces the challenge of increasing production efficiency while

reducing negative environmental impact. In this context, Geographic Information Systems

(GIS) serve as a powerful tool revolutionizing the agricultural sector. GIS allows processing

large volumes of geospatial data, creating detailed field maps, and analyzing various factors

affecting plant growth, which in turn facilitates informed decision-making in agricultural

production.

Particular attention in this study is given to the integration of computer vision methods

into GIS for analyzing data obtained using drones. This technology allows for automatic

identification and classification of objects in images, which significantly increases the

efficiency of monitoring agricultural lands.

The article will examine modern approaches to implementing computer vision systems,

particularly the application of convolutional neural networks, which provide hierarchical

learning of features from basic (edges, corners) to complex (specific objects of interest).

Neural networks are an effective means of image classification. However, when using

this apparatus, a number of difficulties arise. These lie in the great variety of network

architectures and model training methods. The situation has been simplified with the

introduction of the TensorFlow framework, where recommendations have been developed for

certain subject areas regarding the choice of network architectures, methods for their rapid

implementation, and effective training. However, researchers still face open questions about

mailto:Roman.pasichnyk@gmail.com
mailto:Ludaduma7@gmail.com
mailto:Mvmach9@gmail.com

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

135

selecting model parameters and automating the formation of image collections for model

training. This work is dedicated to the study of these issues.

Fig. 1 shows the structure of the automated monitoring system for agricultural business

processes:

Fig. 1. Automated monitoring systems for agricultural business processes

Literature Review. Among the basic publications in the chosen research direction, we

highlight reviews of approaches to image labeling problems [1] [2] [3] and approaches to

building a system of semantic classes based on image segmentation [4], improving

classification quality using cross-entropy similarity loss function [5], and building a semantic

dictionary for image classification using deep learning methods [6].

In [1], basic approaches to forming semantic labels based on a keyword dictionary that

solve the task of assessing the nature of images in the required aspect are analyzed. As these

approaches are labor-intensive, various methods were used to reduce manual annotation costs.

Three different types of image annotation are highlighted: free text annotation, keyword

annotation, and ontology-based annotation.

Keyword annotation involves annotating images using a list of related keywords. There

are two options for choosing keywords. In particular, this includes using arbitrary keywords, as

well as using words from a predefined list. This information can be provided at two levels of

specificity: firstly, a list of keywords related to the full image, listing what is depicted in the

image. Secondly, image segmentation along with keywords associated with each segmentation

area. Additionally, keywords describing the whole image can be provided. Often, segmentation

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

136

consists simply of a rectangular area drawn around the area of interest, or dividing the image

into foreground and background pixels.

Ontological annotation is used when formed ontologies that cover a given subject area

are available. For example, in the field of image description, ICONCLASS is a very detailed

ontology for researching and documenting iconography images, designed to index or catalog

the iconographic content of works of art, reproductions, literature, etc., and contains over

28,000 definitions organized in a hierarchical structure. Each definition is described by an

alphanumeric code accompanied by a textual description.

For arbitrary text annotation, the user can use any combination of words or sentences.

This facilitates annotation but complicates the use of annotation later for image search. Often

this option is used in addition to keyword selection or ontology. Any concepts that cannot be

adequately described using keyword selection are simply added in free-form description.

In [2], the search process in a system of medical articles is investigated. The developed

labeled image dictionary is considered as the base vocabulary, images from which are compared

with images from the analyzed document. Two image matching methods have been developed:

one based on image intensity projections on coordinate axes, and the other on normalized cross-

correlation. If image similarity thresholds are not reached, the analyzed image is skipped.

In [3], it is noted that to ease the load of manually labeling a large number of images,

certain parts of the process can be automated where a computer vision algorithm performs

preliminary annotation, and then a human user reviews and corrects the proposed labels.

Accordingly, the human's role changes to supervision with the sole tasks of filtering, selection,

and updating.

In the development of automated labeling, the methodology of interactive labeling is

used, which is part of the "human-in-the-loop" methodology. Its goal is to reduce the limitations

of fully automated labeling through purposeful interaction with the user. The method allows

the user to label an initial batch of examples, trains a model, and then constantly asks the user

for corrections. A developed strategy of active user feedback is used, which minimizes errors

in subsequent labeling iterations and maximizes the expected information gain.

Works [4]-[6] are devoted to image labeling using semantic classes. In publication [4],

the main idea is to identify areas that provide stable classification using an entropy measure.

Minimizing entropy for different image segments gives its representation as a region adjacency

graph. For each test image, generated contextual information is represented by a co-existence

matrix.

In [5], the average similarity between the prediction and given labels is considered as a

measure of semantic similarity in classification. With this type of evaluation, analysis of the

loss function, which includes both cross-entropy similarity loss and deep feature loss, can

improve the semantic similarity between the prediction and actual labels. It is shown that by

analyzing the loss function, a model that produces more accurate predictions can be obtained.

It is shown that cross-entropy similarity loss improves superclass similarity. It is proved that

the average vocabulary similarity, which is a more accurate indicator, is also improved.

In [6], it is shown that although objects in the foreground of single-label images are one-

level, this assumption is usually incorrect for multi-label images. Moreover, the different

composition and interaction between objects in multi-label images also increases the

informativeness of classifying such images. It is noted that multi-label image classification is

more practical and complex than single-label image classification.

The paper presents a new end-to-end approach to multi-label image classification called

Deep Semantic Dictionary Learning (DSDL), which considers the problem of multi-label image

classification as a dictionary learning task. It uses an autoencoder to generate a semantic

dictionary aligned with visual space, with class-level semantics. Unlike traditional approaches

to multi-label image classification, DSDL not only uses correlations between label and vision

spaces but also aligns relationships between label, semantic, and vision spaces.

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

137

Thus, some basic approaches to image labeling have been considered. Based on their

generalization, we will form an approach to the announced automatic labeling within the

framework of a geographic information system.

Semantic Label System. From the analysis of literature sources, it can be established that the

basic methods of automatic labeling are based on autocorrelation image comparison or using

artificial neural networks. In our view, neural networks are a more flexible tool that well

supports the adaptation of the approach to detected deviations in semantic classification.

Therefore, we prefer image labeling methods based on neural networks.

In particular, deep neural networks, especially convolutional neural networks (CNN),

have achieved significant success in this field. Machine learning frameworks greatly simplify

the process of creating and training neural networks. They provide ready-made tools,

optimizations, and interfaces for interacting with data and models. In this regard, TensorFlow

is one of the most popular machine learning frameworks developed by Google. It is particularly

well-suited for working with deep neural networks, including convolutional neural networks.

This involves the following main steps of using TensorFlow for image classification: data

preparation, model formation, training, validation, and testing.

Storing trained models and quickly using them at the right moment with linking to

corresponding geographical locations requires the development of a specialized geographic

information system. Let's outline its basic structures that emerge from the types of information

we plan to store.

From this perspective, we present the information models Im of the geographic

information system being created as follows: 𝐼𝑚 = 〈 𝐵𝑡, 𝐿𝑠, 𝐺𝑙, 𝑀𝑑, 𝑇𝑟𝑠, 𝑇𝑠𝑠, 𝑀𝑖𝑡〉 (1)

where 𝐵𝑡 - is the type of business process, 𝐿𝑠 - is the image labeling system, 𝐺𝑙 - is the

geographic localization of the business 𝑀𝑑 - process, 𝑇𝑟𝑠 - is the description of the method for

building the image classification model, 𝑇𝑠𝑠 - is the set of images for training, 𝑀𝑖𝑡 - is the set

of images for testing, are the types of images that the model classifies incorrectly. 𝐵𝑡 = 〈 𝐼𝑑𝐵𝑡, 𝑁𝑚𝐵𝑡〉 (2)

where, 𝐼𝑑𝐵𝑡 - is the business process identifier, 𝑁𝑚𝐵𝑡 - is the name of the business

process.

 𝐿𝑠 = 〈 𝐼𝑑𝐿𝑖, 𝑁𝑚𝐿𝑖, Pr _𝐼𝑑𝐿𝑖, 𝐼𝑑𝐵𝑡 〉 (3)

where, 𝐼𝑑𝐿𝑖 - is the labeling element identifier, 𝑁𝑚𝐿𝑖 - is the name of the labeling

element, Pr _𝐼𝑑𝐿𝑖 - is a reference to the parent element of the hierarchy (identifier of the

corresponding labeling element). 𝐺𝑙 = 〈 𝐼𝑑𝐿𝑜𝑐, 𝑁𝑚𝐿𝑜𝑐〉 (4)

where, 𝐼𝑑𝐿𝑜𝑐 - is the location identifier, 𝑁𝑚𝐿𝑜𝑐 - is the name of the location.

 𝑀𝑑 = 〈 𝐼𝑑𝑀𝑑, 𝑇𝑥𝑡𝑀𝑑, 𝐼𝑑𝐵𝑡〉 (5)

where, 𝐼𝑑𝑀𝑑 - is the method identifier, 𝑇𝑥𝑡𝑀𝑑 - is the textual description of the method.

 𝑇𝑟𝑠 = 〈 𝐼𝑑𝑇𝑟𝑠, 𝑇𝑟𝑃𝑎𝑡ℎ, 𝑇𝑟𝑉𝑜𝑙, 𝐷𝑓, 𝐼𝑑𝐿𝑖, 𝐼𝑑𝐵𝑡〉 (6)

where, 𝐼𝑑𝑇𝑟𝑠 - is the identifier of the training image set, 𝑇𝑟𝑃𝑎𝑡ℎ - is the path to the

training image set, 𝑇𝑟𝑉𝑜𝑙 - is the volume of images in the training image set, 𝐷𝑓 - is the date

and time of the image set formation. 𝑇𝑠𝑠 = 〈 𝐼𝑑𝑇𝑠𝑠, 𝑇𝑠𝑃𝑎𝑡ℎ, 𝑇𝑠𝑉𝑜𝑙, 𝐷𝑓, 𝐼𝑑𝐿𝑖, 𝐼𝑑𝐵𝑡〉 (7)

where, 𝐼𝑑𝑇𝑠𝑠 - is the identifier of the testing image set, 𝑇𝑠𝑃𝑎𝑡ℎ - is the path to the

training image set, 𝑇𝑠𝑉𝑜𝑙 - is the volume of images in the testing image set.

 𝑀𝑖𝑡 = 〈 𝐼𝑑𝑀𝑖𝑡, 𝐼𝑑𝐿𝑜𝑐, 𝐼𝑑𝐿𝑖, 𝐼𝑑𝐵𝑡〉 (8)

where, 𝐼𝑑𝑀𝑖𝑡 - is the identifier of the types of images that the model classifies incorrectly.

Method of Image Set Formation. After building structures for storing information, let's

consider preparing a collection of images for training the neural network. We will start by

building a list for labeling images from the subject area, entering it into the 𝐿𝑠 structure. To

build an image labeler for this subject area, we form a collection of images that will contain

sets of images for each element of the constructed list. In the case of drones availability, the

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

138

image collection can be built from observations of objects that need to be labeled. If the system

is just being formed, we create the image collection by extracting them or scraping them from

the Web network.

Image scraping is the process of automatically collecting images from web pages. The

Python library Beautiful Soup is often used for image extraction. It is characterized by ease of

use, can work with various HTML and XML formats, and provides a wide range of methods

for searching, navigating, and manipulating DOM elements.

To use the Beautiful Soup library, it is necessary to specify a Web page that contains

suitable images for extraction. It can be selected by analyzing the output of a Web - search

engine for a term query in the 𝑁𝑚𝐿𝑖 image category.

Presenting the algorithm for scraping images from a multi-page structure in the form of

certain stages. In particular, in the first stage, we set the tool, source, and parameters of scraping.

In the second stage, we load the contents of the selected number of pages from a certain source

and select the contents of image tags for a certain class from it. In the third stage, we select

unique links to images from the selected tag content. And finally, in the fourth stage, we record

images in a specified folder with corresponding names. Let's detail the implementation of these

stages using the following steps and operators.

1. We form driver - the constructor of the webdriver.Chrome() class from the selenium

library, which initializes a new instance of the web driver for the Chrome browser:

 𝑑𝑟𝑖𝑣𝑒𝑟 = 𝑤𝑒𝑏𝑑𝑟𝑖𝑣𝑒𝑟. 𝐶ℎ𝑟𝑜𝑚𝑒() (9)

2. We fix url - a link to the site chosen for downloading and the npages we aim to

download.

3. We fix class - the css class of image tags that contain links to the needed images

4. We organize a loop for the number of pages to download: 𝑓𝑜𝑟 𝑝𝑎𝑔𝑒 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑝𝑎𝑔𝑒1, 𝑛𝑝𝑎𝑔𝑒 + 1) (10)

5. We form url_page - a link to the next page: 𝑢𝑟𝑙_𝑝𝑎𝑔𝑒 = 𝑢𝑟𝑙 + "? 𝑝𝑎𝑔𝑒 = " + 𝑠𝑡𝑟(𝑝𝑎𝑔𝑒) (11)

6. Getting the contents of the next page: 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑔𝑒𝑡(𝑢𝑟𝑙_𝑝𝑎𝑔𝑒) (12)

7. We analyze the contents of the page using an HTML parser and build a DOM -

document object model: 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑝𝑎𝑔𝑒_𝑠𝑜𝑢𝑟𝑐𝑒 (13)

 𝑠𝑜𝑢𝑝 = 𝐵𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙𝑆𝑜𝑢𝑝(𝑐𝑜𝑛𝑡𝑒𝑛𝑡, "ℎ𝑡𝑚𝑙. 𝑝𝑎𝑟𝑠𝑒𝑟") (14)

8. Loop through the elements of the image tag (IMG) with the specified class: 𝑓𝑜𝑟 𝑖𝑚𝑎𝑔𝑒 𝑖𝑛 𝑠𝑜𝑢𝑝. 𝑓𝑖𝑛𝑑𝐴𝑙𝑙("𝑖𝑚𝑔", {"𝑐𝑙𝑎𝑠𝑠" ∶ 𝑐𝑙𝑎𝑠𝑠}) (15)

9. Selecting a link from an element if it has not been used yet: 𝑖𝑓 𝑖𝑚𝑎𝑔𝑒[′𝑠𝑟𝑐′] 𝑛𝑜𝑡 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠: (16) 𝑟𝑒𝑠𝑢𝑙𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑚𝑎𝑔𝑒[′𝑠𝑟𝑐′]) (17)

10. Loop through elements from downloaded images: 𝑓𝑜𝑟 𝑏 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠: (18)

11. Getting an image by link: 𝑖𝑚𝑎𝑔𝑒_𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠. 𝑔𝑒𝑡(𝑏). 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (19) 𝑖𝑚𝑎𝑔𝑒_𝑓𝑖𝑙𝑒 = 𝑖𝑜. 𝐵𝑦𝑡𝑒𝑠𝐼𝑂(𝑖𝑚𝑎𝑔𝑒_𝑐𝑜𝑛𝑡𝑒𝑛𝑡) (20) 𝑖𝑚𝑎𝑔𝑒 = 𝐼𝑚𝑎𝑔𝑒. 𝑜𝑝𝑒𝑛(𝑖𝑚𝑎𝑔𝑒_𝑓𝑖𝑙𝑒). 𝑐𝑜𝑛𝑣𝑒𝑟𝑡("𝑅𝐺𝐵") (21)

12. Writing the image to a specified folder with a numerical name in the order of

download: 𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ = 𝑃𝑎𝑡ℎ("𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 _𝑝𝑙𝑜𝑤2", 𝑠𝑡𝑟(𝑛𝑢𝑚𝑏). 𝑧𝑓𝑖𝑙𝑙(𝑙𝑒𝑛𝑔𝑡ℎ) + ". 𝑝𝑛𝑔")

(22) 𝑖𝑚𝑎𝑔𝑒. 𝑠𝑎𝑣𝑒(𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ, "𝑃𝑁𝐺", 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 80) (23) 𝑛𝑢𝑚𝑏 = 𝑛𝑢𝑚𝑏 + 1 (24)

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

139

Method Training Model Classification Image. We plan image scraping to have sufficient

images for forming training and test sets for each marker NmLi of a specific business process

NmBt. Thus, we create folders for individual business processes NmBt with subdirectories for

text markers NmLi within them. For each marker, we form image directories for training Tr

and testing Ts with corresponding volumes TrVol and TsVol. The number of such directories

can be expanded with a link to the date and time of formation Df. Thus, paths to image

directories for training Pitr(NmBt,NmLi,Df) and testing Pits(NmBt,NmLi,Df) are formed,

which are recorded in the information system:

 𝑇𝑟𝑃𝑎𝑡ℎ = 𝑃𝑖𝑡𝑟(𝑁𝑚𝐵𝑡, 𝑁𝑚𝐿𝑖, 𝐷𝑓), (25)

 𝑇𝑠𝑃𝑎𝑡ℎ = 𝑃𝑖𝑡𝑠(𝑁𝑚𝐵𝑡, 𝑁𝑚𝐿𝑖, 𝐷𝑓). (26)

After forming or replenishing sets of image directories, it is necessary to build and train

the model according to a specific algorithm, which can be presented as the following sequence

of stages. In the first stage, we set the values of the main algorithm parameters and form a

dataset for model training. In the second stage, we create data processing pipelines that shuffle

elements in the training and validation datasets. In the third stage, we create a neural network

model for classification with random image transformations. In the fourth stage, we set the

parameters of the method that regulates the learning process, carry out the learning process, and

save the resulting model. The stages are implemented through the following steps:

1. Set the number of epochs, i.e., cycles during each of which the model uses each data

sample once, and the extracted_dir directory containing photos for training, the fraction of data

vs that will be allocated for the validation set

 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑑𝑖𝑟 = 𝑇𝑟𝑃𝑎𝑡ℎ(𝑁𝑚𝐵𝑡, 𝑁𝑚𝐿𝑖, 𝐷𝑓) (27)

2. Create a path object that represents the path to the directory from which images will be

obtained 𝑑𝑎𝑡𝑎_𝑑𝑖𝑟 = 𝑝𝑎𝑡ℎ𝑙𝑖𝑏. 𝑃𝑎𝑡ℎ(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑑𝑖𝑟) (28)

3. Create a dataset of images from the directory containing photos for training and

validation 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 = 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑢𝑡𝑖𝑙𝑠. 𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑓𝑟𝑜𝑚_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦(𝑑𝑎𝑡𝑎_𝑑𝑖𝑟,𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑠𝑝𝑙𝑖𝑡 = 𝑣𝑠, 𝑠𝑢𝑏𝑠𝑒𝑡 = "𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔", 𝑠𝑒𝑒𝑑 = 123,𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 = (𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡, 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ), 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) (29) 𝑣𝑎𝑙_𝑑𝑠 = 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑢𝑡𝑖𝑙𝑠. 𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑓𝑟𝑜𝑚_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦(𝑑𝑎𝑡𝑎_𝑑𝑖𝑟,𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑠𝑝𝑙𝑖𝑡 = 𝑣𝑠, 𝑠𝑢𝑏𝑠𝑒𝑡 = "𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛", 𝑠𝑒𝑒𝑑 = 123,𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 = (𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡, 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ), 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) (30)

where the function 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑢𝑡𝑖𝑙𝑠. 𝑖𝑚𝑎𝑔𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑓𝑟𝑜𝑚_𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 expects images to be

organized in subdirectories, each corresponding to one class. Subdirectory names will be used

as labels for images. The function recursively traverses the specified directory, loads all images

and converts them into tensors that can be used for neural network training. All loaded images

and their labels are combined into a Dataset object that can be used for iteration and feeding

data into the model; 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑠𝑝𝑙𝑖𝑡 determines the fraction of data vs that will be allocated for the

validation set; 𝑠𝑢𝑏𝑠𝑒𝑡 specifies which part of the data to return: training or validation; 𝑠𝑒𝑒𝑑 is used to set the initial value of the random number generator. If we set the same

seed value for different runs, the data will be divided into training and validation sets in the

same way; 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 defines the size of the data batch, i.e., a subset of data that is fed into the

model simultaneously for gradient computation and weight updates. A larger batch size usually

allows using larger mini-batch sizes, which can speed up training.

4. Increase the dimension of each element in the 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 dataset. If previously each

element was a pair (image, label), now it will become a triple (image, label, two identical

integers).

 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑡𝑓. 𝑑𝑎𝑡𝑎. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟() (31)

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

140

𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 = 𝑡𝑓. 𝑑𝑎𝑡𝑎. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡. 𝑧𝑖𝑝((𝑡𝑟𝑎𝑖𝑛_𝑑𝑠, (𝑐𝑜𝑢𝑛𝑡𝑒𝑟, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟))) (32)

where 𝑡𝑓. 𝑑𝑎𝑡𝑎. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟() creates simple datasets for testing or debugging

models, used to create an infinite dataset where each element is a sequential integer starting

from 0; 𝑡𝑓. 𝑑𝑎𝑡𝑎. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡. 𝑧𝑖𝑝() combines elements from two or more datasets into one new

dataset. Elements from corresponding positions in the original datasets will be joined into

tuples. A new dataset 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 is created, which contains tuples of three elements: an image

from the original train_ds set, the first integer from the counter set, and the second integer from

the counter set. These additional integers can be used as indices for elements in the batch for

learning algorithms.

5. We create data processing pipelines that shuffle elements in the 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 and 𝑣𝑎𝑙_𝑑𝑠

datasets, apply augmentation to increase data diversity for the training set, combine data into

batches for efficient learning, and prefetch batches in advance to minimize model downtime 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 = (𝑡𝑟𝑎𝑖𝑛_𝑑𝑠 . 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(1000) . 𝑚𝑎𝑝(𝑎𝑢𝑔𝑚𝑒𝑛𝑡) (33)

 .batch(batch_size)

 .prefetch(tf.data.AUTOTUNE)) 𝑣𝑎𝑙_𝑑𝑠 = (𝑣𝑎𝑙_𝑑𝑠 . 𝑚𝑎𝑝(𝑟𝑒𝑠𝑖𝑧𝑒_𝑎𝑛𝑑_𝑟𝑒𝑠𝑐𝑎𝑙𝑒, 𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑐𝑎𝑙𝑙𝑠 = 𝑡𝑓. 𝑑𝑎𝑡𝑎. 𝐴𝑈𝑇𝑂𝑇𝑈𝑁𝐸)

 .batch(batch_size)) (34)

.prefetch(tf.data.AUTOTUNE))

6. We describe a sequence of transformations for images that will be applied during model

training, which will randomly change images in each training epoch 𝑑𝑎𝑡𝑎_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑙𝑖𝑝("ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙", 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 = (𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡, img_width, 3)) 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑎𝑙𝑓1), (35) 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝑍𝑜𝑜𝑚(𝑎𝑙𝑓2),]))

There 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() creates a sequential model where each layer is applied to the

output of the previous one; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑙𝑖𝑝("ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙") randomly flips the image horizontally; 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 indicates the shape of input images (height, width, number of channels). 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑎𝑙𝑓1) randomly rotates the image by an angle from -𝑎𝑙𝑓1 to 𝑎𝑙𝑓1 degrees. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑎𝑛𝑑𝑜𝑚𝑍𝑜𝑜𝑚(𝑎𝑙𝑓2) randomly increases or decreases the image scale by a

value from –𝑎𝑙𝑓2% to 𝑎𝑙𝑓2%.

7. We create a sequential neural network model for image classification, consisting of

several layers 𝑚𝑜𝑑𝑒𝑙 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([
data_augmentation,

layers.Rescaling(1./255),

layers.Conv2D(16, 3, padding='same', activation='relu'),

layers.MaxPooling2D(),

layers.Conv2D(32, 3, padding='same', activation='relu'),

layers.MaxPooling2D(), (36)

layers.Conv2D(64, 3, padding='same', activation='relu'),

layers.MaxPooling2D(),

layers.Dropout(0.2),

layers.Flatten(),

layers.Dense(128, activation='relu'),

layers.Dense(num_classes)])

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

141

There 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() creates a sequential model where each layer is applied to the

output of the previous one; 𝑑𝑎𝑡𝑎_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 - this layer (which we've already discussed) applies random

transformations to images for data augmentation; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔(1./255) - normalizes pixel values of images to the range 0-1. This is

important for most neural networks; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐶𝑜𝑛𝑣2𝐷(16, 3, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = ′𝑠𝑎𝑚𝑒′, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′) - applies a two-

dimensional convolution with 16 filters of size 3x3; 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = ′𝑠𝑎𝑚𝑒′ - ensures that the output image size remains the same as the input; 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′ - applies the ReLU (Rectified Linear Unit) activation function to the

output values; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷() - the model contains two more convolution and pooling layers

with a larger number of filters, allowing the model to extract more complex features from

images; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏𝑒𝑡𝑎) - randomly turns off a fraction beta of neurons in this layer

during training. This helps prevent overfitting; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐹𝑙𝑎𝑡𝑡𝑒𝑛() - transforms a three-dimensional tensor (height, width, channels) into

a one-dimensional vector; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′) - applies a connected layer with 128 neurons

and ReLU activation, allowing the model to extract abstract features; 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠) - applies the last connected layer with the number of

neurons equal to the number of classes. The output of this layer will be used for image

classification.

8. Setting the optimizer, loss function, and metrics for model training

model.compile(optimizer='adam',

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), (37)

metrics=['accuracy'])

There 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′ - a method that regulates the learning process by changing

the weights of the neural network to minimize the loss function; 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑜𝑠𝑠𝑒𝑠. 𝑆𝑝𝑎𝑟𝑠𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 - a loss function for classification

tasks that measures how well the model predicts results on training data; 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′] - the simplest metric that shows the percentage of correctly

classified samples, which allows evaluating the quality of the model during training and

validation.

9. Initiate the neural network training process

history = model.fit(train_ds, validation_data=val_ds, epochs=epochs) (38)

with training sample 𝑡𝑟𝑎𝑖𝑛_𝑑𝑠, validation sample val_ds, and the number of epochs of

training sample passes during one iteration.

10. Save the result of model training in the file mt 𝑚𝑜𝑑𝑒𝑙. 𝑠𝑎𝑣𝑒(𝑚𝑡) (39)

Thus, IC (𝑑𝑎𝑡𝑎_𝑑𝑖𝑟, 𝑣𝑠, 𝑎𝑙𝑓1, 𝑎𝑙𝑓2, 𝑏𝑒𝑡𝑎) (formalizes the process of building and

training an image recognition and classification model in the Tensorflow package, the main

parameters of which are the set of training image 𝑑𝑎𝑡𝑎_𝑑𝑖𝑟 directories, the fraction of images

vs that will be allocated for the validation set, the limits 𝑎𝑙𝑓1 of random image rotation, the

limits 𝑎𝑙𝑓2 of random image scaling, the fraction beta of randomly turning off network neurons

during training.

Experimental Results. We experimentally assess the quality of the built image classification

model and its adaptation to the proposed data. In the first stage, if necessary, we adapt the list

of semantic labels to the set of images selected for training. If the quality of image recognition

for a certain semantic label is sufficiently low, this label is subordinated to the one closest to it

semantically. In the second stage, we optimize the accuracy of the image labeling model by

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

142

selecting the parameters of the model training algorithm and, if possible, adjusting the volume

of the training set for image classification.

Let's consider the process of labeling images of field cultivation in an agricultural

enterprise. Let the system of semantic labels be defined by the following one-level list:

𝑁𝑚𝐿𝑖 = [𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑝𝑙𝑜𝑤, 𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, 𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑠𝑒𝑒𝑑𝑖𝑛𝑔,𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑔_𝑝𝑙𝑎𝑛𝑡𝑠, 𝑡𝑟𝑎𝑐𝑡𝑜𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔_𝑔𝑟𝑎𝑠𝑠, 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔] (40)

In the first stage, we download classified images from Web resources, for example, from

the site https://www.istockphoto.com. First, using a thematic query, we find Web sites of

thematic images with the ability to select photos based on queries that correlate with semantic

labels. We form such a set of images using the described method of forming an image set, in

particular using the css class "yGh0CfFS4AMLWjEE9W7v". The volume of downloaded

collections should be selected as significant; in this example, volumes of 1200 photos were set.

Unfortunately, when viewing the collapsed images, it turns out that not all of them correspond

to the queries based on which they were selected by the Web site. Therefore, automatic

downloading should be supplemented with visual manual filtering. This is a labor-intensive

process, so we aimed to form collections for semantic labels in volumes of 12, 24, or 48

specimens, calculating that these sets will be divided into training and validation parts. In the

next stage, we train the corresponding neural networks according to the described algorithm.

Randomly selected image samples used for training are shown in the following figure.

Fig. 2. Sample images used for training

The quality of training was evaluated using test samples that were not used for training.

They were formed from the set of downloaded images with a volume of 5 and 10 images per

semantic label.

It was established that the classification accuracy primarily depends on the size of the

training sample as well as on the parameters of image collection augmentation during training.

The main results of the calculations are presented in the following table.

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

143

Table 1.

Image Classification Accuracy

n TrVol |NmLi| α1 α2 ε(%)
1 12 6 0.3 0.3 43

2 12 6 0.4 0.4 63

3 12 6 0.5 0.5 58

4 24 5 0.2 0.2 26

5 24 5 0.3 0.3 18

6 24 5 0.4 0.4 38

7 48 5 0.2 0.2 32

8 48 5 0.1 0.1 18

9 48 5 0.05 0.05 8

In the table, TrVol denotes the size of the training sample, |𝑁𝑚𝐿𝑖| - the number of

semantic labels in the model, 𝛼1, 𝛼2 - parameters of image collection augmentation during

training, ε - relative error obtained when testing the model. The presented results indicate a low

level of classification accuracy with small training sample sizes. Poor differentiation of the

semantic label 𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑠𝑒𝑒𝑑𝑖𝑛𝑔 was also recorded, which had to be combined with the label, 𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠_𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 leading to a reduction in their number from 6 to 5. With a successful

selection of augmentation parameters and using 48 images per label in the training set, it was

possible to reduce the classification error to an acceptable level of 8%. The dynamics of errors

of the image classification model during its parameter selection are shown in the following

figure. Only one level of recorded errors can be considered acceptable.

Fig.3. Dynamics of errors of the image classification model during its tuning

Conclusions.The paper investigates the issue of automating the formation of image collections

and the formation of a methodology for tuning the parameters of the image classification model

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

R.M. Pasichnyk, L.V. Babala L.V, M.V. Machuliak

144

using neural networks with the TensorFlow framework. An algorithm for automated formation

of a thematic image collection is proposed. A method of parametric training of the thematic

image classification model using the TensorFlow framework is also formalized. Experimental

studies have confirmed the effectiveness of the proposed approaches.

References

1. Hanbury A. A survey of methods for image annotation. Journal of Visual Languages and

Computing. 2008. No.19. P. 617–627.

2. Chachra S.K., Xue Z, Antani S., Demner-Fushman D., Thoma G.R. Extraction and

Labeling High-resolution Images from PDF Documents. Lister Hill National Center for

Biomedical Communications Bethesda, MD: U. S. National Library of Medicine,2023.

20894

3. Sager Ch., Janiesch Ch., Zschech P. A survey of image labelling for computer vision

applications. Journal of Business Analytics. 2021. V.4. No.2, P. 91-110, DOI:

10.1080/2573234X.2021.1908861

4. Kluckner S., Mauthner T., Roth P.M., Bischof H. Semantic Image Classification Using

Consistent Regions and Individual Context. URL:

https://www.researchgate.net/publication/

221259742_Semantic_Image_Classification_Using_Consistent_Regions_and_Individual

_Context

5. Yu.Y. Learning Semantics of Classes in Image Classifcation. URL:

https://www.zora.uzh.ch/id/eprint/259312/1/yu2023master.pdf

6. Zhou F., Huang S., Xing Y. Deep Semantic Dictionary Learning for Multi-label Image

Classification. URL: https://cdn.aaai.org/ojs/16472/16472-13-19966-1-2-20210518.pdf

ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 3

145

МЕТОД ПІДВИЩЕННЯ ЯКОСТІ РОЗМІТКИ ЗОБРАЖЕНЬ СЕМАНТИЧНОГО
МОНІТОРИНГУ БІЗНЕС-ПРОЦЕСІВ ГІС

Р.М. Пасічник, Л.В. Бабала, М.В. Мачуляк

Західноукраїнський національний університет

11, Львівська, м. Тернопіль, 46009, Україна
Emails: Roman.pasichnyk@gmail.com, Ludaduma7@gmail.com, Mvmach9@gmail.com

Стаття присвячена актуальній проблемі автоматизації процесу маркування зображень для систем
комп'ютерного зору в сільському господарстві. Автори досліджують методи формування наборів
зображень та налаштування параметрів моделей класифікації зображень з використанням нейронних
мереж на базі фреймворку TensorFlow. Наукова значущість роботи полягає у розробці нових підходів до
автоматизованого збору тематичних колекцій зображень та формалізації методики параметричного
навчання моделей класифікації. Практична цінність дослідження виражається у підвищенні ефективності
процесу маркування зображень для геоінформаційних систем у сільськогосподарській галузі. Методологія
дослідження включає аналіз існуючих підходів до маркування зображень, розробку алгоритму
автоматизованого формування тематичних колекцій зображень, формалізацію методу параметричного
навчання моделі класифікації та експериментальну перевірку запропонованих підходів. Основні
результати роботи: 1. Розроблено алгоритм автоматизованого формування тематичних колекцій
зображень. 2. Формалізовано метод параметричного навчання моделі класифікації зображень з
використанням фреймворку TensorFlow. 3. Експериментально встановлено залежність точності
класифікації від розміру навчальної вибірки та параметрів аугментації зображень. Дослідження показало,
що при оптимальному підборі параметрів аугментації та використанні 48 зображень на мітку в навчальній
вибірці можливо знизити помилку класифікації до прийнятного рівня 8%. Робота вносить значний внесок
у розвиток методів автоматизованої обробки зображень для сільськогосподарських геоінформаційних
систем. Практичне значення результатів полягає у підвищенні ефективності процесів моніторингу та
управління в аграрному секторі.
Ключові слова: комп'ютерний зір, маркування зображень, нейронні мережі, TensorFlow, геоінформаційні
системи, сільське господарство, класифікація зображень.

