[HOOPMATHKA TA MATEMATNYHI METO/I B MOZAEJIFOBAHHI = 2024 = Tom 14, Ne 3

DOI 10.15276/imms.v14.n03.146 Informatics and Mathematical Methods in Simulation
UDC 004.424.5 Vol.14 (2024), No. 3, pp. 146-153

EFFICIENCY OF SORTING ALGORITHMS IN TYPESCRIPT

O. G. Trofymenko!, Yu. V. Prokop?, A. 1. Dyka', O. S. Karahuts!

! National University "Odesa Law Academy"
23, Fontans'ka doroga st., Odesa, 65009, Ukraine
Email: trofymenko@onua.edu.ua
2 National Odesa Polytechnic University
1, Shevchenko Ave., Odesa, 65044, Ukraine
Email: prokop.y.vi@op.edu.ua

Since developers often need to organize data, choosing the fastest and most efficient sorting
algorithm depending on the size and other properties of the data, as well as the programming
language, is relevant. In some cases, processing the data directly in the browser is necessary
due to the need for high data confidentiality. The growing popularity of TypeScript in web
development over the past year makes it topical to study the effectiveness of various sorting
algorithms in this language. This paper investigates the speed and performance of twelve
sorting algorithms using the modern web development language TypeScript: Bubble,
Selection, Insertion, Shell, Merge, Quick, TimSort, Smooth, Introspective, Gravity, Radix,
and built-in. We compared the actual runtime of each algorithm for sets of pseudorandom
integers from 1000 to 100,000,000 elements. Although the built-in sort() TS method is
flexible and adapts to different situations, the study results show that it gives the best results
and can only be a good choice on data up to 1000 items. The built-in method loses to Quick
Sort, Introspective Sort, Timsort, and Merge Sort algorithms on larger arrays and may not be
the best choice. Therefore, studying the efficiency and features of sorting algorithms is very
relevant. The applied aspect of the study is to find out which algorithm, when implemented
in TypeScript, will optimally sort an array of pseudorandom numbers depending on its size
and other properties. The results can help effectively choose one algorithm under certain
conditions and data. The study confirmed that each sorting algorithm we considered has
advantages and disadvantages. The choice of an appropriate sorting algorithm for a particular
development task depends mainly on the size and specific characteristics of the data and the
programming language. The choice is also influenced by the desired level of sorting
efficiency and the stability requirements of the algorithm.

Keywords: sorting algorithms, efficient algorithms, running time, performance, sorting,
testing, TypeScript.

Introduction. Software developers frequently use sorting algorithms to organize numeric and
textual data. Effective sorting is also essential for optimizing the implementation of other
algorithms, such as search and data merging algorithms, which require sorted lists to work
correctly. All modern programming languages have built-in sorting methods. However, the
algorithms used in these methods are only sometimes the most efficient. Therefore, the problem
of choosing the optimal one from a wide range of sorting algorithms is relevant.

Sorting efficiency depends not only on the algorithm but also on the programming
language in which it is implemented and on the properties of the data being sorted [1].
Therefore, no optimal sorting algorithm exists for all programming languages and data sets.
Studying the effectiveness of algorithms for a particular programming language is relevant.
Analysis of research and publications. Many works have been devoted to studying sorting
algorithms implemented in different programming languages. For example, using the Python
programming language, the paper [2] investigated the performance of five sorting algorithms
(Quick, Heap, Merge, Introspective, and Radix). In [3] and [4], the performance of two and
three sorting algorithms in Java was compared, respectively. The study [5] compares the
performance of algorithms for sorting sets of pseudorandom numbers from 10,000 to 100,000
elements using three languages: Python, C++, and Java. The paper [1] investigates the

146



O. G. Trofymenko, Yu. V. Prokop, A. I. Dyka, O. S. Karahuts

efficiency of nine popular sorting algorithms in six programming languages: Python, C++, Java,
JavaScript, PHP, and C#. The paper [6] studies the effectiveness of five popular sorting
algorithms (Bubble, Selection, Insertion, Merge, and Quick) using C++ and Java for random
number sets ranging from 10,000 to 50,000. The paper [7] explains the work of three less
common sorting algorithms in TypeScript (Bloom, Shell, Heap) but does not compare the
efficiency of these algorithms. The analysis of publications revealed, on the one hand, interest
in the search for practical sorting algorithms in different languages and, on the other hand, the
lack of studies on algorithms in TypeScript and JavaScript. Usually, data sorting is performed
on the server side. However, in some cases, processing the data directly in the browser is
necessary due to the need for high data confidentiality. The growing popularity of TypeScript
in web development over the past year makes it relevant to study the effectiveness of various
sorting algorithms in this language.

Research Objective. The main goal of the work is to compare different sorting algorithms
implemented in TypeScript. The applied aspect of the study is to identify how the
implementation in this language affects the algorithm's execution time for arrays of
pseudorandom numbers of different sizes.

Choosing a programming language for research. The reason for selecting TypeScript (TS)
for this study is its rapidly growing popularity in web development. TS is an add-on for
JavaScript (JS), as TypeScript code needs to be compiled into JS to run in a browser. On the
other hand, this makes TS compatible with any browser and JS engine and ensures its
compatibility with existing JS libraries and frameworks. The official website
(https://www.typescriptlang.org/) states, "TypeScript is a strongly typed programming
language that builds on JavaScript, giving you better tooling at any scale". Most programming
language rankings consider TS and JS to be different languages, with TS rapidly catching up
with JS in popularity. Thus, in the DOU 2024 ranking of programming languages, TypeScript
(15%) came in second place after JavaScript (JS) (15.3%) [8], almost equalizing its leadership
position. At the same time, over the past year, JS has lost 2.8% of users (professionals) who use
the language for development. TypeScript has risen in the ranking by 10.7%, becoming the
language of the year in popularity growth. Front-end developers often prefer TypeScript. The
share of TS supporters in the front-end development has increased by 15.3% over the past year.
As for the back-end and full-stack areas, fans have also increased significantly over the year,
although not as rapidly — by 2.5% and 9.4%, respectively. TypeScript has become more widely
used both for desktop applications (up 3.9%) and for mobile application development, both
cross-platform (up 7.1%) and operating system-specific: mobile Android (up 1.9%), mobile
10S (up 3.5%), and embedded (up 0.4%).

Comparative analysis of the speed and performance of sorting algorithms. In the practical
part of the study, we implemented 11 sorting algorithms using the TypeScript language and the
Node.js platform: Bubble, Selection, Insertion, Shell, Merge, Quick, Timsort, Smooth,
Introspective, Gravity, and Radix. We compared the actual runtime of each algorithm for sets
of pseudorandom integers from 1000 to 100,000,000 elements in increments of 10n (n is the
number of bits in the number). We calculated the time as the arithmetic mean of five
measurements of the algorithm's running time, as this approach is commonly used in research
[1] — [6]. The units of measurement are milliseconds (ms). The hardware and software
components of the study are as follows: MacBook Pro 13" laptop based on the Apple M2
processor and 8 GB of RAM; TS —5.1.6, Node — v18.13.0.

At the first stage of analyzing the performance of these sorting algorithms, we excluded
from the comparison the algorithms that showed low performance. For example, the Bubble
Sort for 1,000,000 items took 1,953,523 ms, i.e. 32.5 minutes. The Selection Sort algorithm
showed 3.6 times better results than the bubble algorithm (536,735 ms) but was also very slow
(almost 9 minutes). The Insertion Sort showed results (264,248 ms, i.e., 4.5 minutes) twice as
good as the Selection Sort. However, all these three algorithms are inefficient, especially for

147



[HOOPMATHKA TA MATEMATNYHI METO/I B MOZAEJIFOBAHHI = 2024 = Tom 14, Ne 3

large datasets, compared to the results of much more efficient algorithms. The time complexity
of all three algorithms is O(n?), and the space complexity is O(1).

Gravity, or Bead sorting, is a relatively new and not-so-common sorting algorithm. We
considered it in our study because the algorithm's complexity can theoretically reach O(n) for
sorting natural numbers [9]. Practical implementation showed that sorting 100,000 items takes
3918 ms, which is worse than the performance of the Insertion Sort algorithm. Still, unlike this
algorithm, the Gravity sort requires large memory consumption during O(n?) operation, so it is
unsuitable for sorting large data sets. When sorting 1,000,000, the program crashes due to a
lack of memory — a stack overflow (Fig. 1). Therefore, we had to remove this algorithm from
the further comparison of the performance of the sorting algorithms.

o —————————

Array(10) was sorted with Bead sort in 0.8835 ms.
Array(100) was sorted with Bead sort in 6.198834 ms.
Array(1000) was sorted with Bead sort in 9.420167 ms.
Array(10000) was sorted with Bead sort in 139.405083 ms.
Array(100000) was sorted with Bead sort in 3917.76275 ms.

<—— Last few GCs ——>

[19227:0x140078000] 14076 ms: Mark-sweep (reduce) 2043.3 (2084.2) -> 2043.3 (2084.2) MB,
requested
[19227:0x140078000] 15038 ms: Mark-sweep (reduce) 2043.3 (2084.2) -> 2043.3 (2084.2) MB,
requested

<-—— JS stacktrace ——>

FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory
1: ©x104e7d4fc node::Abort() [/Users/klapeks/.nvm/versions/node/v18.16.0/bin/node]
2: 0x104e7d6ec node::ModifyCodeGenerationFromStrinas(v8::Local<v8::Context>, v8::Local<v8::

Fig. 1. The result of Gravity sorting.

The Shell Sort algorithm sorted 1,000,000 items in 243 ms and 100,000,000 items in 62
seconds, 1230 times faster than the Insertion Sort algorithm. The time complexity varies
depending on the choice of gap sequence. It is typically O(n!?) or O(n?). And the space
complexity is O(1). The Shell Sort algorithm shows better results on partially sorted data. Its
efficiency decreases on datasets greater than 10° elements.

The Merge Sort was even faster: it sorted 1,000,000 items in 159 ms and 100,000,000 in
28 seconds. The time complexity of the Merge Sort algorithm is O(n log n), and the space
complexity is O(n). This algorithm can be efficient for massive data sets of up to 10° elements.
The Merge Sort is a stable algorithm, e.g., equal elements retain order when sorting.

The Quick Sort algorithm has a spatial complexity of log(n) and a time complexity of
O(n log n) operations on average, and in the worst case, it makes O(n?) comparisons [10]. This
algorithm is unstable. In practice, the Quick Sort showed the best results among the compared
algorithms, even for large data sets. For example, it processed 1,000,000 items in 89 ms and
100,000,000 in 13.7 seconds.

The Timsort hybrid sorting algorithm combines Insertion and Merge sorting. Its time
complexity is O(n log n), and its space complexity is O(1). The practical implementation of this
algorithm with TS has shown better results than the Shell and Merge algorithms. The Timsort
sorted 1,000,000 items in 124 ms and 100,000,000 in 24.5 s. This algorithm is stable and shows
promising results on partially sorted data.

Smooth Sort is a variation of the Heap Sort algorithm proposed by E. Dijkstra. The
advantage of Smooth Sort is that its performance approaches O(n) if the input data is partially
ordered. In contrast, the performance of the Heap Sort is constant and does not depend on the
state of the input data. Smooth sorting in TS was slower than Shell sort: it sorted 1,000,000
items in 274 ms and 100,000,000 in 101 s.

Radix Sort is a fast, stable algorithm for organizing data with a time complexity of O(n+k)
(where n is the number of elements in the array; k is the number of characters in the alphabet;

148



O. G. Trofymenko, Yu. V. Prokop, A. I. Dyka, O. S. Karahuts

for decimal numbers, k = 10) and a space complexity of O(n+k). There are as many ordering
cycles as bits in the maximum element. The Radix Sort is suitable for sorting numeric data
when the range of values is not too wide. The results of this algorithm in TS turned out to be
slower than Shell's: it sorted 1,000,000 elements in 391 ms and 100,000,000 in 64 s.

Introspective Sort uses Quick Sort and switches to Heap Sort if the recursion depth
exceeds some predefined level (e.g., the logarithm of the number of sorted items). This
approach combines the advantages of both methods with a worst-case time complexity of
O(n logn) and performance comparable to Quick Sort. The memory consumption during
Introsort execution is O(n). In practice, Introspective Sort is faster than Merge Sort but slower
than Quick Sort: it sorted 1,000,000 items in 139 ms and 100,000,000 in 21.8 seconds.

Using the built-in sort() method in TypeScript gave mixed results. For small arrays of up
to 1000 elements, its results were the best among all twelve sorting algorithms compared.
However, with an increase in the number of the array elements, its performance deteriorated:
with 10,000 elements, the built-in sort was twice as slow as the Quick Sort algorithm, and when
sorting 1,000,000 elements, its performance was slower than the Shell algorithm, and ranked
sixth among the twelve (Table 1). These results can be explained by the fact that the sort()
method is reconfigurable and uses different sorting algorithms "under the hood": Quick, Heap,
Merge, or other. Among them, the most commonly used algorithm in the JS sort() method is

Table 1.
Running time of TypeScript sorting algorithms for different array sizes (in ms)
Sorting Number of elements
Algorithm 10° 10¢ 10° 109 107 10°
Bubble 1,85 84,18 | 15739 1953523 — —
Selection 1,84 58,48 5433 543963 — -
Insertion 1,37 32,40 2647 299032 — —
Gravity 8,50 146,0 3617 — — -
Smooth 0,93 8,32 34,1 274 | 5931 | 101523
Radix 0,42 4,94 33,1 391 | 3820 | 64110
Shell 1,45 2,24 18,5 243 | 3345 | 62264
Built-in 0,22 1,39 17,4 258 | 2310 | 31398
Merge 0,63 1,75 20,5 159 | 1881 | 28209
Timsort 0,54 4,51 15,1 124 | 1478 | 24510
Introspective 0,36 1,67 12,2 139 1621 21799
Quick 0,39 0,77 7,8 89 982 | 13742

The choice of algorithm for the sort() method can depend on various factors, such as the
size of the array, the type of data, the optimization strategy of the sorting mechanism, and even
the browser.

The built-in sort() method in JS is designed to handle various scenarios and ensure stable
and efficient operation on different data types. To achieve this, it employs more sophisticated
pivot selection strategies like the median of three through GetThirdIndex(). However, the call
to this function requires additional computation to find the third index and compare values to
select the pivot. This overhead can become noticeable on large arrays or with frequent calls. If
the data is unordered or has a complex structure (e.g., objects instead of simple numbers),
handling it through GetThirdIndex() might require more time for comparisons. Therefore, in
some cases, especially with specific data types or distributions of values, this can slow down
the sorting process compared to a more straightforward Quick Sort implementation.

As it turned out, the built-in sorting is not the best in speed and performance. TS, like JS,
is a scripting programming language. Since TS is an add-on for JS, most JS libraries are
compatible with TS. The mechanisms of these languages are usually implemented as part of

149



[HOOPMATHKA TA MATEMATNYHI METO/I B MOZAEJIFOBAHHI = 2024 = Tom 14, Ne 3

web browsers, server platforms, or standalone TS and JS runtimes [ 12]. Browsers have different
JavaScript engines, which are a way of executing JavaScript code. That's why different
browsers and platforms use different methods and strategies, including the sort() method. Over
time, browsers themselves revise their approaches to using their engines to optimize and
improve them, and therefore, the JavaScript toolkit is transforming. For example, Chrome uses
the V8 engine, and Mozilla Firefox uses SpiderMonkey. Firefox uses Merge Sort but switches
to Insertion Sort on small arrays [12]. Desktop Chrome and Safari on the V8 engine use Timsort
and Quick Sort, but on 108, they use Merge Sort. Since Node.js uses V8 (the engine from
Chrome), it also uses primarily Quick Sort. Older Opera uses Merge Sort. Konqueror and
Rekonq use a binary and red-black tree and their variations [13].

The choice of sorting algorithm is mainly guided by the Big O notation indicators [14].
This notation provides a general rule of thumb for the dependence of expected performance on
algorithm scalability. Still, it cannot consider all the variable factors that affect the performance
and speed of sorting algorithms.

Fig. 2 shows a graphical representation of the performance comparison of eight sorting
algorithms listed in Table 1.

The implementation of the algorithms showed a fairly wide variation in speed and
performance despite their identical profiles in the Big O notation. Sometimes, sorting
algorithms with worse O-notations of time complexity showed better speed and performance
than algorithms with worse Big O notations. For example, in the worst case, Quick Sort has a
time complexity of O(n2), unlike many other algorithms with better notations, showing the
highest speed and performance for arrays of 10,000 elements or more.

As shown above, four sorting algorithms (Bubble, Selection, Insertion, and Gravity) are
unproductive for large arrays; thus, we excluded them from the comparison.

100000 -z Sorting algorithms run time .
5 (logarithmic scale)
g
10000 | — _
7
1000
100 ; —e— Smooth
' / moo
—@— Radix
Shell
10 L
e=—@=—= Built-in
g s : —® - Merge
1 ./ Timsort
~"
—@— Introsort
—&— Quick
0,1
1000 10 000 100 000 1 000 000 10.000 000 100 000 000

Number of elements
Fig. 2. Speed comparison of TypeScript sorting algorithms.

Comparing the speed (Fig. 2) and performance of the mentioned algorithms (Fig. 3), we
found out that the size of the arrays significantly affects the work of different sorting algorithms.

150



O. G. Trofymenko, Yu. V. Prokop, A. I. Dyka, O. S. Karahuts

How many elements the algorithm processes per millisecond

12000

10000

Elements per ms

8000

6000

4000

2000

0
1 000 10 000 100 000 1 000 000 10 000 000 100 000 000
Number of elements
—@— Smooth —@— Radix Shell @@= Built-in
—®- - Merge Timsort —@— Introspective —@0— Quick

Fig. 3. Performance comparison of TypeScript sorting algorithms.

As we can see from the graphs, the built-in sorting method is only sometimes the best
choice since there are algorithms with much better performance and productivity. For example,
the built-in TS sort has the highest speed and performance for up to 1,000 item arrays. For
arrays with more than 1,000 items, the Quick Sort algorithm showed the best speed and
performance. The size of the array significantly influences the speed and performance of the
Shell and Merge algorithms. For large array sizes, the Merge Sort is more efficient. The
practical implementation of the Timsort algorithm by TS tools has shown better results than the
Shell and Merge algorithms. Smooth and Radix sorting showed the worst performance for
massive data sets among the eight sorting algorithms compared in Table 1. For arrays up to
1000 elements, Introsort, Timsort, Radix Sort, and Quick Sort have good performance. The
built-in sort() method can be the best choice in this case.

Considering the results obtained, we can conclude that Quick Sort is one of the most
efficient sorting algorithms for large datasets. It generally outperforms many other algorithms.
However, there are certain cases and data structures where Quick Sort may not be the best
choice. In such situations, different methods should be preferred. For small arrays of up to 50
elements, consider using Insertion Sort or Shell Sort; for up to 1000 elements, consider
Introsort, Timsort, or built-in sort. For the already sorted or nearly sorted data, consider using
Timsort or Merge Sort. If stability is critical or you want to preserve the order of equal elements
when using secondary sorting criteria, stable algorithms like Merge Sort or Timsort can be the
better choice. When sorting in environments with limited stack size or handling massive
datasets that might cause deep recursion, consider using an iterative version of Quick Sort or
another algorithm like Merge Sort.

Conclusions. Since developers frequently need to organize data, selecting a fast, efficient
sorting algorithm is relevant. This paper investigates the speed and performance of twelve

151



[HOOPMATHKA TA MATEMATNYHI METO/I B MOZAEJIFOBAHHI = 2024 = Tom 14, Ne 3

sorting algorithms using the modern web development language TypeScript: Bubble, Selection,

Insertion, Shell, Merge, Quick, TimSort, Smooth, Introspective, Gravity, Radix, and built-in.

Although the built-in sort() TS method is flexible and adapts to different situations, the
study results show that it gives the best results and can only be a good choice on data up to 1000
items. The built-in method loses to Quick Sort, Introspective Sort, Timsort, and Merge Sort
algorithms on larger arrays and may not be the best choice. Therefore, studying the efficiency
and features of sorting algorithms is very relevant.

Bubble, Selection, Insertion, and Gravity algorithms showed significantly worse speed
and performance, so we excluded them from consideration.

We analyzed the performance differences of the other eight sorting algorithms. The
results can help effectively choose one algorithm under certain conditions and data. The study
confirmed that each sorting algorithm we considered has advantages and disadvantages.

The choice of an appropriate sorting algorithm for a particular development task depends
mainly on the size and specific characteristics of the data and the programming language. The
choice is also influenced by the desired level of sorting efficiency and the stability requirements
of the algorithm.

References

1. Tpodpumenko O.I'., IIpoxon FO.B., YUenypna O.€., Kopuiituyx M.M. I[lopiBHsSHHS
MIBUJIKO/Ii aJTOPUTMIB COPTYBaHHS y Pi3HUX MOBax mporpamyBaHHs. KibepbOesnexa:
oceima, nayka, mextixa. 2023. Ne 1(21). C. 86-98. DOI: https://doi.org/10.28925/2663-
4023.2023.21.8698

2. Marcellino M., Pratama D. W., Suntiarko S. S., Margi K. Comparative of Advanced
Sorting Algorithms (Quick Sort, Heap Sort, Merge Sort, Intro Sort, Radix Sort) Based on
Time and Memory Usage. Proceedings 1st International Conference on Computer Science
and Artificial Intelligence (ICCSAI'2021). 2021. Vol. 1. P. 154-160. DOI:
https://doi.org/10.1109/ICCSAI53272.2021.9609715.

3. Ali L, Lashari H., Keerio 1., Maitlo A., Chhajro M., Malook M. Performance Comparison
between Merge and Quick Sort Algorithms in Data Structure. Proceedings International
Journal of Advanced Computer Science and Applications. 2018. Vol. 9. P. 192-195. DOI:
https://doi.org/10.14569/1JACSA.2018.091127.

4. Rabiu A., Garba E., Baha B., Malgwi Y., Dauda M. Performance Comparison of three
Sorting Algorithms Using Shared Data and Concurrency Mechanisms in Java. Arid-zone
Journal of Basic & Applied Research. 2022. Vol. 1. P. 155-64. DOI:
https://doi.org/10.55639/607fox.

5. Durrani O. K., Hayan S. Asymptotic performances of popular programming languages for
popular sorting algorithms. Semiconductor Optoelectronics. 2023. Vol. 42. P. 149-169. URL:
https://www.researchgate.net/publication/369196272 asymptotic _performances of popu
lar programming_languages for popular sorting algorithms.

6. Durrani O. K., Farooqi A. S., Chinmai A. G., Prasad K. S. Performances of Sorting
Algorithms in Popular Programming Languages. Proceedings International Conference on
Smart Generation Computing, Communication and Networking (SMART GENCON'2022),
Bangalore, India. P. 1-7. DOI: https://doi.org/10.1109/smartgencon56628.2022.10084261.

7. Korzhenko V. Exploring Lesser-Known Sorting Algorithms in TypeScript. URL:
https://medium.com/@yvitaliykorzenkoua/exploring-lesser-known-sorting-algorithms-in-
typescript-1c0a2ecff57

8. DOU. Ranking of programming languages 2024. URL:
https://dou.ua/lenta/articles/language-rating-2024

9. Nagaraju N. A better implementation of bead-sort. URL:
https://medium.com/@yvini.the.pooh/a-better-implementation-of-bead-sort-7ca7352de036

10. Srivastava, P. Stable Sorting Algorithms. URL: https://www.baeldung.com/cs/stable-
sorting-algorithms.

152



O. G. Trofymenko, Yu. V. Prokop, A. I. Dyka, O. S. Karahuts

11. Riordan G. JavaScript Sort — How to Use the Sort Function in JS. 2023. URL:
https://www.freecodecamp.org/news/how-does-the-javascript-sort-function-work/.

12. Three Common Sorting Algorithms with JavaScript. URL:
https://blog.javascripttoday.com/blog/sorting-algorithms-with-javascript/.

13. Grzybek M. Ultimate guide to sorting in Javascript and Typescript. URL:
https://dev.to/maciekgrzybek/ultimate-guide-to-sorting-in-javascript-and-typescript-4al9..

14. Big-O Cheat Sheet. URL: https://www.bigocheatsheet.com.

E®EKTUBHICTD AJITOPUTMIB COPTYBAHHS B TYPESCRIPT
O.T. Tpopumenxo', 10. B. ITpokon?, A. 1. Jluka, O. C. Kaparyn

! Hanionansuuii yaisepeuter «Ojiechka IOpUIMYHA aKaIeMish
23, donranceka gopora, M. Opeca, 65000, Ykpaina
Email: trofymenko@onua.edu.ua
2 HauioHanbHuit yHiBepcuTeT «OjiechbKa MOMITEXHIKA
1, llleBuenka mp., M. Oxeca, 65044, Ykpaina
Email: prokop.y.vi@op.edu.ua

VY crarTi NOpIBHSAHO JBaHAUATH PI3HUX aJTOPUTMIB COpPTYBaHHs, peanizoBaHux y TypeScript. Ockinbku
PO3pPOOHUKAM YacTO MOTPIOHO BIOPSAKOBYBATH JaHi, aKTyaJIbHUM € BHOIp IIBUAKOTO Ta €()eKTHBHOTO AJITOPUTMY
COPTYBaHHS B 3aJIS)KHOCTI BiJl pO3Mipy Ta IHIIMX BIACTUBOCTEW JaHHX, a TAKOXK MOBM HporpamyBanHs. Yepes
notpedy 3abe3MmeyYcHHsT BUCOKOT KOH(IACHIIIHHOCTI JaHUX 1HOMI MOBOIHMTHCSA OOpOONIATH TX Oe3mocepeaHbo B
Opay3epi. 3pocranns momymsipaocTi TypeScript y BeOpo3poOIi poOUTh aKTyalbHUM BHBUYCHHS €()EKTHBHOCTI
pI3HMX aNTOPUTMIB COPTYBaHHS IIi€l0 MOBOI0. [IpWKIamHWi acmeKkT AOCII/UKEHHS MoJsirae y 3’siCyBaHHI
aIropuT™My, peanizoBaHoro y TypeScript, skuii ONTUMAaIbHO COPTYBAaTHME MAacHB ICEBJIOBHIIAJKOBUX HYHCEI,
3aJIe)KHO BiJf HOTO PO3MIpPY Ta iHIIUX BIACTHUBOCTEH. J[OCHIIKEHO IIBHAKICTH i MPOMYKTHBHICTH TBaHAIISATH
ANTOPUTMIB COPTYBaHHA 32 JIOTIOMOT'OI0 cy4acHOi MoBH BeOpo3pobku TypeScript: Bubble, Selection, Insertion,
Shell, Merge, Quick, TimSort, Smooth, Introspective, Gravity, Radix i BOymoBanoro meroxmy sort(). Bymo
MOPIBHSAHO (paKTUYHHMI YaC BUKOHAHHS KOXKHOTO aJITOPUTMY I HAOOPIiB MCEBJOBUITAAKOBUX LIJIMX YHCEI BiX
1000 1o 100 000 000 enemenTiB. Xo4a BOynoBanuii Mmeroq TypeScript THy4KO aIanTyeThCsl 10 PI3HUX CUTYalil,
pe3yJbTaTH JOCIIDKSHHS MOKa3aly, IO BiH HE 3aBXKAW Ja€ HaWKpalli pe3yJbTaTh Ta MOXXe OyTH XOPOIIUM
BUOOpoM Juire juist fanux 1o 1000 enementiB. BOynoBanuii MeTo/] porpae anroputMaM MBHIKOTO COPTYBaHHS,
IHTPOCIIEKTUBHOT'O COPTYBaHHS, COPTYBAHHS 3JIMTTSAM Ha BEIUKHX MacuBax. JloCiiJuKeHHs MiATBEpAWIIO, IO
KOKEeH PO3IIISIHYTHIA B pOOOTI aJIrOPUTM COPTYBaHHS Ma€ MepeBark Ta HeJoNniku. Bubip BiAMOBITHOTO aropuT™My
COPTYBaHHS JJIs1 KOHKPETHOTO 3aBJIaHHS PO3POOKH 3aJI€XKUTh BiJl pO3Mipy Ta KOHKPETHHX XapaKTEPUCTHK JaHUX,
a TaKOX BiJ] MOBH IporpamyBaHHs. Ha BUOip TakoX BIUIMBaEe OakaHWU PiBEHb ¢(EKTHBHOCTI COPTYBaHHS Ta
BUMOTH 0 CTaOUTRHOCTI airoputMmy. 3M00yTi pe3yabTaTH MOCITIKCHHS O3BOJSIOTH €()eKTUBHO BHOMpPATH
e(eKTUBHHUH aJITOPUTM 3a IEBHUX YMOB 1 JaHUX.

Koaro4oBi ciioBa: anroputMu copTyBaHHS, €(EKTHBHI aJTOPUTMH, 4ac pOOOTH, NPOJYKTHUBHICTh, COPTYBaHHS,
tectyBaHHA, TypeScript.

153



