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Modern ship power plants (SPPs) operate under harsh, variable, and high-load maritime 

conditions, requiring advanced diagnostic tools for early failure detection and predictive 

maintenance. This paper proposes an integrated intelligent diagnostic model that combines 

machine learning, probabilistic reasoning, and heuristic logic to ensure both statistical 

accuracy and engineering adequacy. The model incorporates a three-level architecture: a 
learnable component (CatBoost and neural networks), a probabilistic component (Bayesian 

networks and Markov logic), and a heuristic case-based reasoning (CBR) system with 

expert rules. Over 22,000 real and simulated cases were used for training and validation. 

Weighted aggregation of outputs from all components enables robust prediction of failure 

probabilities. Quantitative evaluation using MAE, RMSE, R², recall, and F1-score shows 

the hybrid model significantly outperforms individual components, achieving 87.2% 

accuracy on an independent test set. Statistical validation with t-tests, chi-squared analysis, 

and confidence intervals confirms the superiority of the integrated approach. Sensitivity 

analysis demonstrates the model's robustness to parameter variations, input noise, and 

training data volume. The model is most sensitive to temperature and vibration data, 

aligning with engineering logic. A saturation effect is observed beyond 10,000 samples, 

indicating the threshold for meaningful data contribution under the current architecture.  

Forecasts show strong alignment with real-world failure data (R = 0.99), validating the 

model's adequacy, interpretability, and practical relevance. Additional robustness testing 

with synthetic noise confirms its stability under real-world sensor uncertainties. The 

proposed model serves as a reliable decision-support tool for diagnostics and prognostics of 

SPPs, capable of identifying both typical and cascading failures. This work contributes to 
the development of intelligent monitoring systems in marine and complex industrial 

environments, offering a comprehensive framework for condition-based maintenance and 

operational risk reduction. 

Keywords: intelligent diagnostics,  failure prediction,  ship power plants,   hybrid model,  

Bayesian networks,  machine learning, case-based reasoning 

 

Introduction. Modern ship power plants (SPPs) [1, 2] operate under constant thermal, 

mechanical, vibrational, and corrosive loads, making intelligent diagnostics and failure 

prediction essential, as failures of key components: diesel engines; compressors; lubrication 

cooling systems - remain a major cause of unplanned downtime, while incorrect predictions 

lead to false alarms or missed faults [3]. Recent research applies machine learning and 

probabilistic approaches, yet often prioritizes accuracy over engineering adequacydefined as 

consistency with statistical patterns and engineering logic, including causality, 

interpretability, robustness, and reproducibility [4, 5]. Autoencoder and temporal-network 

models [6–8] achieve high accuracy but neglect component interactions; Bayesian methods 

[9, 10] capture uncertainty but lack structural completeness; deep learning [11, 12] frequently 

sacrifices physical interpretability. None fully meet the combined adequacy requirements. In 

response, this study proposes an integrated hybrid model combining Bayesian and Markov 

networks, gradient boosting, shallow neural networks, case-based reasoning (CBR), expert 

rules, and cognitive simulations of degradation scenarios [13], tested on over 22,000 

observations to ensure not only higher prediction accuracy but also robustness, 

interpretability, and verifiability. The research develops and validates a three-layer hybrid 

architecture with weighted integration of partial diagnostic estimates, links model parameters 
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to physical failure mechanisms, and compares results with conventional single-method 

approaches, demonstrating improved accuracy, robustness, and explainability. 

Main part. In this study, over 22,000 observations were used, combining real SPP 

operational logs with simulation data to include rare and critical scenarios. The dataset covers 

temperature, vibration, speed, and pressure parameters, along with diagnostic indicators of 

abnormal conditions. Preprocessing involved anomaly removal and normalization to ensure 

training quality. Training datasets ranged from 2,000 to 20,000 entries, allowing analysis of 

forecast saturation as data volume increased. The hybrid model includes three components: 

probabilistic (BNs and first-order Markov logic for modeling state transitions); learnable 

(trained on historical data to estimate failure probability); heuristic (case-based diagnostics 

and expert rules for interpreting operational scenarios). 

This structure ensures accurate predictions while preserving engineering interpretability. 

The final failure probability is calculated by the following formula: 

            CBRdBNdMLd

f PPPp   , ,                                        

where  CBRBNML PPP ,,  - estimates of failure probability obtained from, respectively, the 

learnable component, the probabilistic model, and the case-based logic;  

       ddd  ,,  - weight coefficients (in the current implementation: 0.25, 0.5, 0.25 

respectively), satisfying the condition   1 ddd   

Model performance and reliability were evaluated using MAE, RMSE, R², and statistical 
tests (Student’s t-test, χ² goodness-of-fit, p-value). Residual life prediction for SPPs used three 

approaches: statistical (S) based on regression with historical failure data; machine learning 

(ML) using CatBoost [14] and multilayer perceptron (MLP) on high-dimensional sensor data; 

and hybrid (H) combining statistical and ML outputs with expert rules and operational 

context. CatBoost (500 trees, depth 6, learning rate 0.05, L2=3.0, Logloss) was selected for 

robust categorical feature handling. The MLP (12 inputs, 64 and 32 ReLU hidden layers, 

sigmoid output) was trained with Adam (100 epochs, batch 64, early stopping), dropout 0.3, 

and L2 regularization. Robustness was ensured via 5-fold cross-validation and an 80/20 split, 

with categorical features target-encoded. CatBoost showed higher robustness, while MLP 

demonstrated greater nonlinearity sensitivity; metrics were averaged over folds. Forecasting 

errors (MAE, RMSE, R²) were computed for all component models: statistical, ML, heuristic, 
and the integrated hybrid, with results in Table 1.  

Table 1.  

Comparison of average forecasting errors for different model accuracy estimation approaches 
Model MAE, % RMSE, % (R²) 

Statistical model 6.8 8.2 0.85 

ML 5.2 6.4 0.91 

Hybrid approach 

(Statistics + ML) 
4.7 5.8 0.93 

 

The results indicate that the hybrid model—integrating statistical, probabilistic, and 

heuristic components—achieves the best performance across all key metrics (MAE, RMSE, 

R²). Its MAE of 0.061 is 12–18% lower than the best individual approach, with minimal 

RMSE and a high R² of 0.82, confirming both accuracy and strong explained variance. This 
demonstrates that combining different modeling strategies enhances predictive performance 

while preserving interpretability and robustness, fully meeting the adequacy criteria. 

Statistical significance of the improvements is supported by p-values and confidence 

intervals. 

Table 2 presents training and test sample sizes, input parameter characteristics, and 

confidence intervals, ensuring reproducibility and comparability. All models were trained on 

datasets of equal size, ruling out data volume as a factor. The hybrid model also shows the 

narrowest confidence interval for R², indicating stable and reliable predictions.  
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Table 2. 

Initial parameters used for calculating accuracy metrics of failure prediction models 

Indicator Statistical model (S) 
Machine learning model 

(ML) 
Hybrid model (H) 

Training set size (number 

of failures) 
10 000 10 000 10 000 

Test set size 2 000 2 000 2 000 

Failure probability 

distribution 

Normal (μ = 0.12,       σ 
= 0.03) 

Mixed (log-

normal/exponential) 
Mixed 

MAE  5.6% (±0.7%) 4.3% (±0.5%) 3.1% (±0.4%) 
RMSE 6.9% 5.1% 3.8% 

MAPE 8.7% 6.2% 4.5% 

Coefficient of 

determination (R²) 0.81 0.89 0.93 

95% Confidence interval 

for R² [0.78; 0.84] [0.86; 0.91] [0.91; 0.95] 

 

Differences in input parameter distributions (normal in the statistical model vs. log-

normal/exponential in the ML model) confirm the need for a hybrid approach adaptable to 

various data types. The hybrid model achieved the lowest errors and highest R² (0 .93), 

indicating superior forecasting accuracy. The statistical model had higher errors but remained 

reliable, while the ML model improved forecasts yet lagged behind the hybrid. To verify 

diagnostic accuracy, binary classification metrics (accuracy, recall, F1-score) were analyzed 

for three configurations: probabilistic only, ML only, and hybrid. Figure 1 shows comparative 

percentage values. 

 
Fig. 1. Diagnostic accuracy of different forecast evaluation models 

 

The hybrid model surpasses ML and statistical models in all metrics. ML (CatBoost + 

neural network) outperforms the statistical model but remains behind the hybrid. Similar F1-

score and recall values indicate balanced performance. The hybrid integrates three 

components: statistical (P₁), ML (P₂), and expert (P₃), combined by weighted aggregation 
(0.25, 0.5, 0.25) optimized by RMSE minimization. Expert rules, failure chains, and adaptive 

tuning enhance P₃. With 82% accuracy, the hybrid outperforms CBR (72%) and probabilistic 

analysis (68%) (Fig. 2). Figure 2 shows the integrated method exceeds individual models by 

over 4% in accuracy. Standalone probabilistic and CBR models underperform under variable 

inputs, while integration of trainable, probabilistic, and heuristic components ensures 

robustness, interpretability, and statistically proven reliability - meeting the adequacy criteria 

for SPP diagnostics. 
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Fig.2. Diagnostic accuracy of different methods 

 

Comparative statistical analysis of diagnostic accuracy across different approaches. 
To confirm the reliability of the diagnostic results, statistical tests can be performed: 

significance testing of accuracy improvement (t-test); analysis of differences between 

diagnostic methods (χ²-test); correlation assessment between the weights ddd  ,,  and 

diagnostic errors. 

Significance testing of accuracy improvement (t-test). 

To demonstrate that the integrated method significantly outperforms the individual 

approaches (CBR, BNs, simulation modeling), Student’s t-test is used. Hypotheses: H₀ (null 
hypothesis): the average accuracy of the integrated method is not different from that of the 

individual methods; H₁ (alternative hypothesis): the average accuracy is significantly higher. 

If p < 0.05, reject H₀ → integration indeed improves diagnostics. If p ≥ 0.05, the improvement 
might be due to chance. If the data do not follow a normal distribution, the t-test is replaced 

with the nonparametric Mann–Whitney U-test. 

Analysis of differences between diagnostic methods (χ²-test). 

We compare the number of correct and incorrect predictions across the three 

approaches. Hypotheses: H₀: the methods yield the same error level; H₁: one of the methods is 
significantly more accurate. Conclusion: p < 0.05 → the integrated method is statistically 
better; p ≥ 0.05 → no statistically significant improvement is observed. 

Correlation assessment of weights ddd  ,,     with diagnostic errors 

If changes in weights ddd  ,,  affect diagnostic accuracy, the Pearson correlation 

coefficient can be computed. As part of the sensitivity analysis of the model architecture to 

the configuration of component aggregation weights, a correlation study was conducted 

between the values of the weights d  (trainable component), d  (probabilistic component), 

d  (heuristic component), and the resulting diagnostic error. The goal of the analysis is to 

identify relationships between the contribution of each component and the final forecast 

accuracy. Figure 3 presents a heatmap of correlations based on variations in the weight 

coefficients and the corresponding prediction error values. 

The correlation matrix (Fig. 3) shows a strong negative correlation between the 

trainable component’s weight and diagnostic error (–0.98) and a strong positive correlation 

for the probabilistic component (+0.98), indicating that greater trainable model influence 

improves accuracy, while excessive probabilistic weighting increases errors due to low 

adaptability to dynamic data. The heuristic part has no significant correlation, reflecting a 
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stabilizing but neutral effect. Optimal weights (0.25 trainable, 0.5 probabilistic, 0.25 heuristic) 

minimize error and ensure stability, confirming the hybrid model’s adequacy. 
 

 

Fig.3. Correlation matrix of weights ddd  ,,  with diagnostic errors 

 

Statistical analysis of differences between diagnostic methods. he Student’s t-test 

compares the mean accuracy of diagnostic methods to determine if differences are statistically 

significant. A p-value < 0.05 confirms that the integrated method performs better than 

alternatives, not by chance. For example, p = 0.0034 means only a 0.34% chance the 

difference is random - confirming the integrated method’s superiority over CBR. 
The χ²-test checks whether differences in prediction outcomes across methods are 

statistically meaningful. A p-value = 0.0071 confirms significant variation, showing the 

integrated model reliably outperforms both CBR and BNs. Both tests (t-test and χ²-test) were 

used to assess model differences. Results are summarized in Table 3, including p-values and 

95% confidence intervals. This confirms the hybrid model's advantage is statistically robust 

and reproducible. 

Table 3.  

Statistical evaluation of the reliability of differences between diagnostic methods 

Compared methods Test p-value 
Significance  (α = 

0.05) 
Interpretation 

CBR vs integrated t-test 0.0034 p < 0.05 
The difference is statistically 

significant 

Probabilistic vs Integrated t-test 0.0071 p < 0.05 
The difference is statistically 

significant 

CBR vs probabilistic t-test 0.092 p > 0.05 The difference is not significant 

All three methods χ²-test 0.0052 p < 0.05 
There is a difference between the 

groups 

 

Student’s t-test shows the integrated method significantly outperforms both CBR and 

probabilistic approaches (p < 0.01, α = 0.05), confirming its superior accuracy is not by 

chance. The difference between CBR and probabilistic methods is not statistically significant 

(p = 0.092), indicating comparable performance. The χ²-test (p = 0.0052) confirms significant 

differences among all methods. Confidence intervals and standard deviations at 95% 

confidence further verify the integrated model’s stability and reliability. Table 4 presents 
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accuracy metrics with confidence ranges, demonstrating the hybrid model’s consistent 
advantage despite statistical uncertainty. 

Table 4.  

Diagnostic accuracy and confidence intervals for different methods 
Method Average accuracy (%) 95% confidence interval Standard deviation 

CBR 72.0 [69.3; 74.7] ±1.9 

Probabilistic analysis 68.0 [65.2; 70.8] ±2.1 

Integrated method 82.0 [79.8; 84.2] ±1.7 

 

The p-values below 0.05 and non-overlapping confidence intervals confirm the 

statistical significance of the integrated model’s superiority over other approaches. Accuracy 
comparison (CBR, CBR with probabilistic modeling, and the full integrated method with 

simulation-cognitive components) shows a clear improvement - from 75% (basic CBR) to 

90% (integrated), as illustrated in Figure 4 and supported by Tables 3 and 4. 

 
Fig. 4. Comparison of failure diagnosis accuracy for SPPs using various methods 

 

 
Fig.5. Error graph on training and validation datasets 
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To assess model robustness, accuracy was tested under varying data volumes, operating 

modes, and weight configurations. The dataset (20,000 cases) was split into training (70%), 

validation (15%), and test (15%) sets. Machine learning used 5-fold cross-validation and early 

stopping (MAE-based); neural networks included L2 regularization (λ = 0.01), dropout (0.3), 

and validation monitoring. No overfitting was observed with ≥10,000 records (MAE variation 
≤0.3%), confirming generalization. Performance gains plateaued beyond this size, as shown in 

Table 5 and Figure 5. 

The graph shows that during initial training, errors on both training and validation sets 

decrease in parallel. After ~100 iterations, validation error begins to rise while training error 

continues to fall—an indicator of overfitting. Thus, optimal performance is achieved at ~100 

iterations, which was used to set early_stopping_rounds in CatBoost and to limit epochs in 

neural network training. To verify the model’s robustness and adequacy under data scaling, 

training was conducted on datasets ranging from 2,000 to 20,000 observations. Table 5 

presents how MAE, RMSE, and R² change with data size, allowing detection of the saturation 
effect and confirming stable accuracy growth up to 10,000 cases. 

Table 5.  

Impact of data volume on failure prediction accuracy 
Training data volume 

(number of failures) 
MAE, % RMSE, % 

Minimum required data 

volume       (MAE ≤ 5%) 
500 12.8 15.4 high error 

1,000 9.6 12.1 high error 

5,000 6.2 8.5 high error 

10,000 4.9 6.3 sufficient volume 

20,000 3.8 5.1 optimal volume 

 

At 500–5,000 failure cases, the model is undertrained (MAE > 5%, errors up to 15%). 

At 10,000 cases, MAE reaches 4.9%, meeting accuracy targets. Increasing to 20,000 cases 

improves MAE to 3.8%, but the gain is marginal (1.1%), indicating data saturation. This 

plateau results from model capacity limits and redundancy—most patterns are already 

learned, while added data contributes little due to repetition and noise. Such saturation is 

common in ML and signals exhaustion of informative input under current settings. To 

overcome it: expand features (e.g., dynamics, latent variables), increase model complexity, 

apply active learning or denoising, and use multi-step forecasting (e.g., TTF prediction). 

Figure 6 visualizes this effect, confirming 10,000 cases as the threshold for stable model 

efficiency. 

 
Fig. 6. Dependence of model accuracy (MAE) on the size of the training dataset 
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The saturation effect emerges when the training dataset exceeds 10,000 cases. As shown 

in Figure 6, increasing the dataset from 1,000 to 10,000 significantly improves accuracy 

(MAE drops from 8.0% to 3.1%). Beyond this point, gains are minimal: MAE reduces 

slightly to 3.0% at 15,000 and 2.95% at 20,000 cases, indicating that most informative 

patterns have already been learned. This plateau is typical of informational saturation, caused 

by model limitations (e.g., fixed tree depth or neural network width) and data redundancy or 

noise. The optimal training volume is thus around 10,000 cases - further expansion without 

enhancing model architecture or feature space brings little benefit. To visualize the impact of 

data volume, Figure 7 shows accuracy dynamics relative to total operating hours, clearly 

identifying the saturation threshold and confirming model adequacy at 10,000 observations.  

 
Fig. 7. Forecast accuracy curve depending on training data volume 

 

Figure 7 shows prediction accuracy rising from 78% at 5,000 h to 94% at 25,000 h, with 

the largest gain before 10,000 h and slower improvement thereafter, indicating learning 

saturation. This confirms model stability and generalizability for reliable diagnostics with 

limited data. Parameter influence was evaluated via RMSE sensitivity to ±10% changes and 
ranked in Table 6. 

Table 6.  

Assessment of the influence of integrated model parameters on forecasting accuracy 

Model parameter 

Average impact on 

forecast error 

(RMSE, %) 

Accuracy deviation 

with ±10% change 

Sensitivity coefficient 

(impact on accuracy) 

Failure probability of key 

components 

6.5 ±4.2% High 

BN coefficients 5.8 ±3.9% High 

Accounting for cascading effects 5.2 ±3.4% Medium 

Influence of operational factors 4.6 ±2.8% Medium 

Simulation scenarios of failures 3.9 ±2.5% Medium 

Time intervals in the ММ  3.5 ±2.1% Low 

 

Table 6 shows forecast accuracy is most sensitive to failure probabilities and Bayesian 

coefficients, with moderate effects from cascading and operational factors, and minimal from 

time discretization, confirming the model’s adequacy and robustness.  

Sensitivity analysis of the model to input data. 

This study assesses the impact of measurement errors, diagnostic intervals, and failure 

probability inaccuracies on SPP diagnostics. Sensitivity analysis of key operational 

parameters showed forecast accuracy is most affected by temperature (−6%), then vibration 
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(~5.5%) and oil pressure (~4.5%) (Fig. 8). Temperature and vibration are direct fault 

indicators, while pressure deviations are less evident, confirming the model’s physical 
plausibility and suitability for maintenance decisions. 

 
Fig. 8. Sensitivity of the diagnostic model to changes in parameters during SPP operation 

 

Key parameters from Table 7 include: oil and coolant temperatures, oil pressure, shaft 

speed, hull vibration, insulation resistance, engine load, and operating hours - all essential for 

assessing degradation and failure risks. 

Table 7. 

Sensitivity analysis of the model to changes in input parameters 

Parameter 
Δ failure probability at 10% 

parameter change 
Impact level on model accuracy 

Oil temperature (°C) +4.8% High 

Coolant temperature (°C) +3.9% Medium 

Oil pressure (bar) -5.1% High 

Shaft rotation speed (rpm) -2.7% Medium 

Hull vibration (mm/s) +6.5% High 

Electrical insulation resistance 
(MΩ) -4.2% Medium 

Engine load (%) +7.3% High 

Operating hours +5.9% High 

 

The model shows the highest sensitivity to temperature parameters - exceeding 

thresholds raises failure probability by 20–25%. A 30% increase in vibration reduces forecast 

accuracy by 8–10% and raises MAE. Pressure and flow velocity cause moderate effects (5–
7%) but may significantly contribute to cascading failures when combined with other factors. 

Electrical load changes mostly affect power subsystems and have limited impact on 

mechanical parts. 

Temperature and vibration are primary risk indicators, while pressure and power gain 

importance in interactions. Sensitivity, assessed via elasticity coefficients, local gradients, and 

Sobol’ indices for ±10% parameter changes, confirms these roles. 

Local sensitivity coefficient (gradient-based estimate) [15]: 
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where P is the predicted failure probability; 

    is the i-th input parameter;; 

  is the perturbation (typically 10% of the nominal value) 

Elasticity coefficient (normalized sensitivity) [16]: 
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This metric shows the percentage change in the predicted failure probability resulting 

from a 1% change in parameter Xᵢ. 
Global Sobol' sensitivity index (first-order) [17]: 

,
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S
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i
i   

where:   is the vector of all variables except Xᵢ; 
      is the conditional expectation of P given Xᵢ; 
         is the total variance of the output variable P 

The sensitivity analysis was performed using the Monte Carlo method with Latin 

Hypercube Sampling (LHS), running 1,000 simulations per parameter. All variables were 

normalized to [0,1], with ±10% perturbations applied for local gradient estimates. Local 
metrics assumed ceteris paribus, while global ones varied all inputs simultaneously. 

Three key metrics were used: local sensitivity gradients (change in failure probability 

per unit input change), elasticity coefficients (in %), and first-order Sobol indices (S₁). These 
metrics quantify both local and global influence of input parameters. Results for the top eight 

features are presented in Table 8. 

Table 8.  

Formal sensitivity metrics of the model to key input parameters 

Parameter 
ΔP / ΔX (local 

sensitivity) 
Elasticity (%) Sobol index (S₁) 

Oil temperature 0.027 21.3% 0.38 

Coolant temperature 0.024 18.9% 0.31 

Hull vibration 0.018 14.2% 0.22 

Oil pressure 0.011 9.1% 0.12 

Shaft rotation speed 0.009 7.8% 0.08 

Insulation resistance 0.005 3.7% 0.05 

Engine load 0.004 2.9% 0.03 

Operating time (runtime 

hours) 
0.003 2.4% 0.02 

 

Table 8 shows temperature and vibration have the greatest influence (Sobol indices 30–
40% of variance), while pressure, frequency, and electrical values are moderate, and runtime 

and load minimal. This supports focusing on high-impact parameters in SPP diagnostics. 

Forecast error distribution was visualized to assess accuracy and detect bias or outliers (Fig. 

9). 

 
Fig. 9. Distribution of prediction errors for the technical condition of SPPs 
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Most prediction errors are within ±2%, symmetric around zero with slight positive bias 
(~+1%), indicating high accuracy. Narrow spread and no heavy tails confirm low risk of large 

errors. Comparison with onboard monitoring, OREDA [18], and expert assessments confirms 

robustness and suitability for real-world SPP diagnostics. 

Table 9. 

Comparison of model predictions with actual operational data 
Time (hours) Predicted failures (%) Observed failures (%) Difference (%) 

5000 5.2 5.5 0.3 

10000 12.1 12.5 0.4 

15000 19.3 19.8 0.5 

20000 27.5 28.0 0.5 

25000 35.4 36.0 0.6 

 

Tables 9, 10 show high model accuracy with average deviation 5.2% (max 7%). Main 

engine probability is overestimated by 5.8% from simplified load assumptions, cooling 

system deviation (6.9%) indicates need for better thermal modeling, while generator and ship 

power unit deviations (4.1% and 3.8%) are acceptable. Errors are <3.5% in early operation 

(<10,000 h) and rise after 20,000 h from long-term wear modeling limits. Figures 10 and 

related graphs show predicted–observed alignment with errors under 1% to 10,000 h, ~2% by 

15,000–20,000 h, and ~3% after 25,000 h, confirming reliability. Further accuracy gains may 

come from refining degradation parameters, adaptive modeling, adding maintenance data, and 

expanding failure histories. 

 
Fig. 10. Evaluation of forecast reliability over time 

Table 10. 

Comparative analysis of predicted and actual failure data for SPP components 
Time 

step 
Component 

Predicted failure 

probability 

Actual number of 

failures 
Difference (forecast error) 

1 Fuel system 0.02 1 0.01 

2 
Cooling 

system 
0.06 2 0.02 

3 Generator unit 0.05 3 0.00 

The table shows predicted failure probabilities closely match actual data (max error 

0.02), performing best on high-risk components. Independent test validation confirms strong 

generalization. Table 11 demonstrates higher accuracy and lower deviation compared to CBR 

and probabilistic networks, confirming model reliability and engineering adequacy. 
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Table 11.  

Diagnostic results of the model on the test dataset 
Method Average accuracy (%) Standard deviation (%) Test set accuracy (%) 

CBR 72.4 3.2 70.5 

Probabilistic networks 78.3 2.7 76.8 

Integrated method (CBR + 

Bayes + simulation) 
85.9 2.1 87.2 

 

The integrated method demonstrates the highest accuracy (87.2%) on the test dataset, 

with the lowest standard deviation (2.1%), indicating the model's robustness. For final 

reliability assessment, the model’s predicted failure probabilities were compared with actual 
operational data across equipment lifecycle stages. This revealed potential systematic 

deviations and confirmed alignment with real conditions. Results are shown in Figure 11, 

depicting failure probability versus operating time from both model and observations. 

 
Fig. 11. Deviation graph between model and actual data 

 

The graph shows strong agreement between predicted and actual failure data from 5,000 

to 25,000 hours, with maximum deviation below 0.6%, confirming high accuracy. The linear 

trend reflects steady failure probability growth, while slight deviations after 20,000 hours may 

stem from underestimating nonlinear degradation. This supports the model’s reliability and 
suitability for technical monitoring.  

 
Fig.12. Correlation between forecasted and actual failure data of the SPP 
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Figure 12 shows a strong correlation (R = 0.99) between predicted and observed failures 

with minimal bias and narrow confidence intervals, confirming model accuracy and 

robustness. The integrated CBR approach provides stable risk assessment. Robustness tests 

with 1–10% Gaussian noise on key inputs confirm stability. Improvements may come from 

adding dynamic parameters and more data. 

The analysis shows that up to 5% noise distortion, the model remains functional, 

exhibiting only a slight decline in accuracy. At 10% noise, a moderate increase in error (21%) 

and a decrease in R² by 0.08 are observed, which remains within acceptable limits for early 

diagnostics tasks. These results confirm that the SPP equipment failure diagnosis model is 

resistant to moderate levels of noise an essential characteristic when processing sensor data 

under operational uncertainty. Therefore, the noise robustness aspect, as part of the model's 

adequacy, is empirically validated. 

Table 12. 

Impact of noise on the accuracy of spp equipment failure diagnosis model 
Noise 

level (% 

of range) 

MAE (no 

noise) 

MAE 

(with 

noise) 

ΔMAE 
(%) 

R² (no noise) R² (with noise) ΔR² (%) 

0 % 0.061 0.061 0.00 0.82 0.82 0.00 

2 % 0.061 0.064 +4.9 0.82 0.80 –2.4 

5 % 0.061 0.069 +13.1 0.82 0.78 –4.9 

10 % 0.061 0.074 +21.3 0.82 0.74 –9.8 

 

Conclusions. The study evaluated an intelligent SPP diagnostic model combining learnable, 

probabilistic, and heuristic components, integrating sensor data, causality, and expert 

knowledge. Validation via MAE, RMSE, R², t-test, and chi-squared test confirmed reliability. 

Sensitivity analysis highlighted temperature and pressure as key factors, with accuracy gains 

saturating after 10,000 samples. The model meets engineering criteria—explainability, 

robustness, reproducibility—and is suitable for intelligent monitoring and forecasting under 

variable conditions. 
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Сучасні суднові енергетичні установки (СЕУ) функціонують в умовах агресивного, змінного та 
високонавантаженого морського середовища, що вимагає застосування сучасних діагностичних засобів 
для раннього виявлення відмов і прогнозного технічного обслуговування. У статті запропоновано 
інтегровану інтелектуальну модель діагностики, яка поєднує методи машинного навчання, імовірнісне 
висновування та евристичну логіку для забезпечення як статистичної точності, так і інженерної 
адекватності. Модель має трирівневу архітектуру: навчальний компонент (CatBoost і нейронні мережі), 
імовірнісний компонент (байєсівські мережі та марковська логіка) та евристичну систему на основі 
прецедентів (CBR) з експертними правилами. Для навчання та валідації використано понад 22 000 
реальних і змодельованих випадків. Зважене агрегування результатів усіх компонентів забезпечує 
надійне прогнозування ймовірності відмов. Кількісна оцінка за метриками MAE, RMSE, R², recall і F1-

score показує, що гібридна модель суттєво перевершує окремі компоненти, досягаючи точності 87,2% на 
незалежній тестовій вибірці. Статистична перевірка за допомогою t-критерію, χ²-аналізу та довірчих 
інтервалів підтверджує перевагу інтегрованого підходу. Аналіз чутливості демонструє стійкість моделі 
до змін параметрів, шуму у вхідних даних та обсягів навчальної вибірки. Найбільшу чутливість модель 
виявляє до температурних і вібраційних даних, що узгоджується з інженерною логікою. Після 10 000 
зразків спостерігається ефект насичення, що свідчить про досягнення порогу інформативності для 
заданої архітектури. Прогнози моделі тісно корелюють із фактичними даними про відмови (R = 0.99), що 
підтверджує її адекватність, інтерпретованість і практичну цінність. Додаткове тестування зі штучним 
шумом підтверджує стабільність моделі в умовах реальних сенсорних похибок. Запропонована модель 
виступає як надійний інструмент підтримки прийняття рішень для діагностики та прогнозування 
технічного стану СЕУ, здатна виявляти як типові, так і каскадні відмови. Це дослідження робить внесок 
у розвиток інтелектуальних систем моніторингу в морській галузі та складних промислових 
середовищах, пропонуючи комплексну основу для технічного обслуговування за станом і зниження 
експлуатаційних ризиків. 
Ключові слова: інтелектуальна діагностика, прогнозування відмов, суднові енергетичні установки, 
гібридна модель, байєсівські мережі, машинне навчання, метод прецедентів. 


