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Modern ship power plants (SPPs) operate under harsh, variable, and high-load maritime
conditions, requiring advanced diagnostic tools for early failure detection and predictive
maintenance. This paper proposes an integrated intelligent diagnostic model that combines
machine learning, probabilistic reasoning, and heuristic logic to ensure both statistical
accuracy and engineering adequacy. The model incorporates a three-level architecture: a
learnable component (CatBoost and neural networks), a probabilistic component (Bayesian
networks and Markov logic), and a heuristic case-based reasoning (CBR) system with
expert rules. Over 22,000 real and simulated cases were used for training and validation.
Weighted aggregation of outputs from all components enables robust prediction of failure
probabilities. Quantitative evaluation using MAE, RMSE, R? recall, and F1-score shows
the hybrid model significantly outperforms individual components, achieving 87.2%
accuracy on an independent test set. Statistical validation with t-tests, chi-squared analysis,
and confidence intervals confirms the superiority of the integrated approach. Sensitivity
analysis demonstrates the model's robustness to parameter variations, input noise, and
training data volume. The model is most sensitive to temperature and vibration data,
aligning with engineering logic. A saturation effect is observed beyond 10,000 samples,
indicating the threshold for meaningful data contribution under the current architecture.
Forecasts show strong alignment with real-world failure data (R = 0.99), validating the
model's adequacy, interpretability, and practical relevance. Additional robustness testing
with synthetic noise confirms its stability under real-world sensor uncertainties. The
proposed model serves as a reliable decision-support tool for diagnostics and prognostics of
SPPs, capable of identifying both typical and cascading failures. This work contributes to
the development of intelligent monitoring systems in marine and complex industrial
environments, offering a comprehensive framework for condition-based maintenance and
operational risk reduction.

Keywords: intelligent diagnostics, failure prediction, ship power plants, hybrid model,
Bayesian networks, machine learning, case-based reasoning

Introduction. Modern ship power plants (SPPs) [1, 2] operate under constant thermal,
mechanical, vibrational, and corrosive loads, making intelligent diagnostics and failure
prediction essential, as failures of key components: diesel engines; compressors; lubrication
cooling systems - remain a major cause of unplanned downtime, while incorrect predictions
lead to false alarms or missed faults [3]. Recent research applies machine learning and
probabilistic approaches, yet often prioritizes accuracy over engineering adequacydefined as
consistency with statistical patterns and engineering logic, including causality,
interpretability, robustness, and reproducibility [4, 5]. Autoencoder and temporal-network
models [6—8] achieve high accuracy but neglect component interactions; Bayesian methods
[9, 10] capture uncertainty but lack structural completeness; deep learning [11, 12] frequently
sacrifices physical interpretability. None fully meet the combined adequacy requirements. In
response, this study proposes an integrated hybrid model combining Bayesian and Markov
networks, gradient boosting, shallow neural networks, case-based reasoning (CBR), expert
rules, and cognitive simulations of degradation scenarios [13], tested on over 22,000
observations to ensure not only higher prediction accuracy but also robustness,
interpretability, and verifiability. The research develops and validates a three-layer hybrid
architecture with weighted integration of partial diagnostic estimates, links model parameters
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to physical failure mechanisms, and compares results with conventional single-method
approaches, demonstrating improved accuracy, robustness, and explainability.
Main part. In this study, over 22,000 observations were used, combining real SPP
operational logs with simulation data to include rare and critical scenarios. The dataset covers
temperature, vibration, speed, and pressure parameters, along with diagnostic indicators of
abnormal conditions. Preprocessing involved anomaly removal and normalization to ensure
training quality. Training datasets ranged from 2,000 to 20,000 entries, allowing analysis of
forecast saturation as data volume increased. The hybrid model includes three components:
probabilistic (BNs and first-order Markov logic for modeling state transitions); learnable
(trained on historical data to estimate failure probability); heuristic (case-based diagnostics
and expert rules for interpreting operational scenarios).

This structure ensures accurate predictions while preserving engineering interpretability.

The final failure probability is calculated by the following formula:

S
P =0, By + P By 47y B »
where  P,,,B;, Py - estimates of failure probability obtained from, respectively, the

learnable component, the probabilistic model, and the case-based logic;

a,,p,,7, - weight coefficients (in the current implementation: 0.25, 0.5, 0.25
respectively), satisfying the condition a,+/8, +7, =1
Model performance and reliability were evaluated using MAE, RMSE, R?, and statistical
tests (Student’s t-test, x* goodness-of-fit, p-value). Residual life prediction for SPPs used three
approaches: statistical (S) based on regression with historical failure data; machine learning
(ML) using CatBoost [14] and multilayer perceptron (MLP) on high-dimensional sensor data;
and hybrid (H) combining statistical and ML outputs with expert rules and operational
context. CatBoost (500 trees, depth 6, learning rate 0.05, L2=3.0, Logloss) was selected for
robust categorical feature handling. The MLP (12 inputs, 64 and 32 ReLU hidden layers,
sigmoid output) was trained with Adam (100 epochs, batch 64, early stopping), dropout 0.3,
and L2 regularization. Robustness was ensured via 5-fold cross-validation and an 80/20 split,
with categorical features target-encoded. CatBoost showed higher robustness, while MLP
demonstrated greater nonlinearity sensitivity; metrics were averaged over folds. Forecasting
errors (MAE, RMSE, R?) were computed for all component models: statistical, ML, heuristic,
and the integrated hybrid, with results in Table 1.

Table 1.
Comparison of average forecasting errors for different model accuracy estimation approaches
Model MAE, % RMSE, % (R?)
Statistical model 6.8 8.2 0.85
ML 52 6.4 0.91
Hybrid approach
(Statistics + ML) 47 >8 0.93

The results indicate that the hybrid model—integrating statistical, probabilistic, and
heuristic components—achieves the best performance across all key metrics (MAE, RMSE,
R?). Its MAE of 0.061 is 12-18% lower than the best individual approach, with minimal
RMSE and a high R? of 0.82, confirming both accuracy and strong explained variance. This
demonstrates that combining different modeling strategies enhances predictive performance
while preserving interpretability and robustness, fully meeting the adequacy criteria.
Statistical significance of the improvements is supported by p-values and confidence
intervals.

Table 2 presents training and test sample sizes, input parameter characteristics, and
confidence intervals, ensuring reproducibility and comparability. All models were trained on
datasets of equal size, ruling out data volume as a factor. The hybrid model also shows the
narrowest confidence interval for R?, indicating stable and reliable predictions.
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Table 2.

Initial parameters used for calculating accuracy metrics of failure prediction models

Indicator Statistical model (S) Machine l(;iril)l ng model Hybrid model (H)
Training set size (number 10 000 10 000 10 000
of failures)
Test set size 2 000 2 000 2 000
Failure probability Normal (u=10.12, c Mixed (log- Mixed
distribution =0.03) normal/exponential)
MAE 5.6% (£0.7%) 4.3% (£0.5%) 3.1% (£0.4%)
RMSE 6.9% 5.1% 3.8%
MAPE 8.7% 6.2% 4.5%
Coefficient of
determination (R?) 081 0.89 0.93
5 .
95% C"“g)‘i“ﬁfe interval [0.78; 0.84] [0.86; 0.91] [0.91; 0.95]

Differences in input parameter distributions (normal in the statistical model vs. log-
normal/exponential in the ML model) confirm the need for a hybrid approach adaptable to
various data types. The hybrid model achieved the lowest errors and highest R? (0.93),
indicating superior forecasting accuracy. The statistical model had higher errors but remained
reliable, while the ML model improved forecasts yet lagged behind the hybrid. To verify
diagnostic accuracy, binary classification metrics (accuracy, recall, F1-score) were analyzed

for three configurations: probabilistic only, ML only, and hybrid. Figure 1 shows comparative
percentage values.
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Fig. 1. Diagnostic accuracy of different forecast evaluation models

The hybrid model surpasses ML and statistical models in all metrics. ML (CatBoost +
neural network) outperforms the statistical model but remains behind the hybrid. Similar F1 -
score and recall values indicate balanced performance. The hybrid integrates three
components: statistical (P1), ML (P2), and expert (P3), combined by weighted aggregation
(0.25, 0.5, 0.25) optimized by RMSE minimization. Expert rules, failure chains, and adaptive
tuning enhance Ps. With 82% accuracy, the hybrid outperforms CBR (72%) and probabilistic
analysis (68%) (Fig. 2). Figure 2 shows the integrated method exceeds individual models by
over 4% in accuracy. Standalone probabilistic and CBR models underperform under variable
inputs, while integration of trainable, probabilistic, and heuristic components ensures

robustness, interpretability, and statistically proven reliability - meeting the adequacy criteria
for SPP diagnostics.
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Fig.2. Diagnostic accuracy of different methods

Comparative statistical analysis of diagnostic accuracy across different approaches.
To confirm the reliability of the diagnostic results, statistical tests can be performed:
significance testing of accuracy improvement (t-test); analysis of differences between

diagnostic methods (y2-test); correlation assessment between the weights «,,f,,7, and

diagnostic errors.

Significance testing of accuracy improvement (t-test).

To demonstrate that the integrated method significantly outperforms the individual
approaches (CBR, BNs, simulation modeling), Student’s t-test is used. Hypotheses: Ho (null
hypothesis): the average accuracy of the integrated method is not different from that of the
individual methods; H: (alternative hypothesis): the average accuracy is significantly higher.
If p <0.05, reject Ho — integration indeed improves diagnostics. If p > 0.05, the improvement
might be due to chance. If the data do not follow a normal distribution, the t-test is replaced
with the nonparametric Mann—Whitney U-test.

Analysis of differences between diagnostic methods (y2-test).

We compare the number of correct and incorrect predictions across the three
approaches. Hypotheses: Ho: the methods yield the same error level; Hi: one of the methods is
significantly more accurate. Conclusion: p < 0.05 — the integrated method is statistically
better; p > 0.05 — no statistically significant improvement is observed.

Correlation assessment of weights «,,,,7,__with diagnostic errors

If changes in weights «a,,f,,7, affect diagnostic accuracy, the Pearson correlation

coefficient can be computed. As part of the sensitivity analysis of the model architecture to
the configuration of component aggregation weights, a correlation study was conducted

between the values of the weights @, (trainable component), S, (probabilistic component),

7, (heuristic component), and the resulting diagnostic error. The goal of the analysis is to

identify relationships between the contribution of each component and the final forecast
accuracy. Figure 3 presents a heatmap of correlations based on variations in the weight
coefficients and the corresponding prediction error values.

The correlation matrix (Fig. 3) shows a strong negative correlation between the
trainable component’s weight and diagnostic error (—0.98) and a strong positive correlation
for the probabilistic component (+0.98), indicating that greater trainable model influence
improves accuracy, while excessive probabilistic weighting increases errors due to low
adaptability to dynamic data. The heuristic part has no significant correlation, reflecting a
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stabilizing but neutral effect. Optimal weights (0.25 trainable, 0.5 probabilistic, 0.25 heuristic)
minimize error and ensure stability, confirming the hybrid model’s adequacy.
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Fig.3. Correlation matrix of weights a,, 8,,7, with diagnostic errors

Statistical analysis of differences between diagnostic methods. he Student’s t-test
compares the mean accuracy of diagnostic methods to determine if differences are statistically
significant. A p-value < 0.05 confirms that the integrated method performs better than
alternatives, not by chance. For example, p = 0.0034 means only a 0.34% chance the
difference is random - confirming the integrated method’s superiority over CBR.

The y>-test checks whether differences in prediction outcomes across methods are
statistically meaningful. A p-value = 0.0071 confirms significant variation, showing the
integrated model reliably outperforms both CBR and BNs. Both tests (t-test and y>-test) were
used to assess model differences. Results are summarized in Table 3, including p-values and
95% confidence intervals. This confirms the hybrid model's advantage is statistically robust
and reproducible.

Table 3.
Statistical evaluation of the reliability of differences between diagnostic methods
Compared methods Test p-value Sign lﬁ(;: a(t)r;c;e (@= Interpretation
CBR vs integrated t-test 0.0034 p <0.05 The d1ffere;nc§ is statistically
significant
Probabilistic vs Integrated |  t-test 0.0071 p<0.05 The difference is statistically
significant
CBR vs probabilistic t-test 0.092 p > 0.05 The difference is not significant
All three methods y>-test 0.0052 p <0.05 There is a dlfg;i)?;: between the

Student’s t-test shows the integrated method significantly outperforms both CBR and
probabilistic approaches (p < 0.01, a = 0.05), confirming its superior accuracy is not by
chance. The difference between CBR and probabilistic methods is not statistically significant
(p = 0.092), indicating comparable performance. The y>-test (p = 0.0052) confirms significant
differences among all methods. Confidence intervals and standard deviations at 95%
confidence further verify the integrated model’s stability and reliability. Table 4 presents
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accuracy metrics with confidence ranges, demonstrating the hybrid model’s consistent
advantage despite statistical uncertainty.

Table 4.

Diagnostic accuracy and confidence intervals for different methods

Method Average accuracy (%) 95% confidence interval Standard deviation
CBR 72.0 [69.3; 74.7] +1.9
Probabilistic analysis 68.0 [65.2; 70.8] +2.1
Integrated method 82.0 [79.8; 84.2] +1.7

The p-values below 0.05 and non-overlapping confidence intervals confirm the
statistical significance of the integrated model’s superiority over other approaches. Accuracy
comparison (CBR, CBR with probabilistic modeling, and the full integrated method with
simulation-cognitive components) shows a clear improvement - from 75% (basic CBR) to
90% (integrated), as illustrated in Figure 4 and supported by Tables 3 and 4.
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Fig. 4. Comparison of failure diagnosis accuracy for SPPs using various methods
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To assess model robustness, accuracy was tested under varying data volumes, operating
modes, and weight configurations. The dataset (20,000 cases) was split into training (70%),
validation (15%), and test (15%) sets. Machine learning used 5-fold cross-validation and early
stopping (MAE-based); neural networks included L2 regularization (A = 0.01), dropout (0.3),
and validation monitoring. No overfitting was observed with >10,000 records (MAE variation
<0.3%), confirming generalization. Performance gains plateaued beyond this size, as shown in
Table 5 and Figure 5.

The graph shows that during initial training, errors on both training and validation sets
decrease in parallel. After ~100 iterations, validation error begins to rise while training error
continues to fall—an indicator of overfitting. Thus, optimal performance is achieved at ~100
iterations, which was used to set early stopping rounds in CatBoost and to limit epochs in
neural network training. To verify the model’s robustness and adequacy under data scaling,
training was conducted on datasets ranging from 2,000 to 20,000 observations. Table 5
presents how MAE, RMSE, and R? change with data size, allowing detection of the saturation
effect and confirming stable accuracy growth up to 10,000 cases.

Table S.
Impact of data volume on failure prediction accuracy

Training data volume Minimum required data
(numbegr of failures) MAE, % RMSE, % volume (I\(/llAE <5%)
500 12.8 15.4 high error
1,000 9.6 12.1 high error
5,000 6.2 8.5 high error
10,000 4.9 6.3 sufficient volume
20,000 3.8 5.1 optimal volume

At 500-5,000 failure cases, the model is undertrained (MAE > 5%, errors up to 15%).
At 10,000 cases, MAE reaches 4.9%, meeting accuracy targets. Increasing to 20,000 cases
improves MAE to 3.8%, but the gain is marginal (1.1%), indicating data saturation. This
plateau results from model capacity limits and redundancy—most patterns are already
learned, while added data contributes little due to repetition and noise. Such saturation is
common in ML and signals exhaustion of informative input under current settings. To
overcome it: expand features (e.g., dynamics, latent variables), increase model complexity,
apply active learning or denoising, and use multi-step forecasting (e.g., TTF prediction).
Figure 6 visualizes this effect, confirming 10,000 cases as the threshold for stable model

efficiency.
-=-- Saturation threshold (~10,000)
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Fig. 6. Dependence of model accuracy (MAE) on the size of the training dataset

318



[HOOPMATUKA TA MATEMATUYHI METOAW B MOJEJIFOBAHHI = 2025 = Tom 15, Ne 3

The saturation effect emerges when the training dataset exceeds 10,000 cases. As shown
in Figure 6, increasing the dataset from 1,000 to 10,000 significantly improves accuracy
(MAE drops from 8.0% to 3.1%). Beyond this point, gains are minimal: MAE reduces
slightly to 3.0% at 15,000 and 2.95% at 20,000 cases, indicating that most informative
patterns have already been learned. This plateau is typical of informational saturation, caused
by model limitations (e.g., fixed tree depth or neural network width) and data redundancy or
noise. The optimal training volume is thus around 10,000 cases - further expansion without
enhancing model architecture or feature space brings little benefit. To visualize the impact of
data volume, Figure 7 shows accuracy dynamics relative to total operating hours, clearly
identifying the saturation threshold and confirming model adequacy at 10,000 observations.
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Fig. 7. Forecast accuracy curve depending on training data volume

Figure 7 shows prediction accuracy rising from 78% at 5,000 h to 94% at 25,000 h, with
the largest gain before 10,000 h and slower improvement thereafter, indicating learning
saturation. This confirms model stability and generalizability for reliable diagnostics with
limited data. Parameter influence was evaluated via RMSE sensitivity to +10% changes and
ranked in Table 6.

Table 6.
Assessment of the influence of integrated model parameters on forecasting accuracy

Model parameter Avgiegfalsltné)r?gz on Ac.curacy deviation Sensitivity coefficient
(RMSE, %) with £10% change (impact on accuracy)
Failure probability of key 6.5 +4.2% High
components
BN coefficients 5.8 +3.9% High
Accounting for cascading effects 5.2 +3.4% Medium
Influence of operational factors 4.6 +2.8% Medium
Simulation scenarios of failures 3.9 +2.5% Medium
Time intervals in the MM 3.5 +2.1% Low

Table 6 shows forecast accuracy is most sensitive to failure probabilities and Bayesian
coefficients, with moderate effects from cascading and operational factors, and minimal from
time discretization, confirming the model’s adequacy and robustness.

Sensitivity analysis of the model to input data.

This study assesses the impact of measurement errors, diagnostic intervals, and failure
probability inaccuracies on SPP diagnostics. Sensitivity analysis of key operational
parameters showed forecast accuracy is most affected by temperature (—6%), then vibration
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(~5.5%) and oil pressure (~4.5%) (Fig. 8). Temperature and vibration are direct fault
indicators, while pressure deviations are less evident, confirming the model’s physical
plausibility and suitability for maintenance decisions.

&

Change in accuracy (%)

o-

T
Temperature, Vibration Oil pressure

Fig. 8. Sensitivity of the diagnostic model to changes in parametérs during SPP operation

Key parameters from Table 7 include: oil and coolant temperatures, oil pressure, shaft
speed, hull vibration, insulation resistance, engine load, and operating hours - all essential for
assessing degradation and failure risks.

Table 7.
Sensitivity analysis of the model to changes in input parameters

- — =
Parameter A fall;:reag 22;?}1113; 10% Impact level on model accuracy
Oil temperature (°C) +4.8% High
Coolant temperature (°C) +3.9% Medium
Qil pressure (bar) -5.1% High
Shaft rotation speed (rpm) -2.7% Medium
Hull vibration (mm/s) +6.5% High
Electrical 1n?1§/l[z;t21)0n resistance 429 Medium
Engine load (%) +7.3% High
Operating hours +5.9% High

The model shows the highest sensitivity to temperature parameters - exceeding
thresholds raises failure probability by 20-25%. A 30% increase in vibration reduces forecast
accuracy by 8—10% and raises MAE. Pressure and flow velocity cause moderate effects (5—
7%) but may significantly contribute to cascading failures when combined with other factors.
Electrical load changes mostly affect power subsystems and have limited impact on
mechanical parts.

Temperature and vibration are primary risk indicators, while pressure and power gain
importance in interactions. Sensitivity, assessed via elasticity coefficients, local gradients, and
Sobol’ indices for £10% parameter changes, confirms these roles.

Local sensitivity coefficient (gradient-based estimate) [15]:

P _P(X,+AX,)—P(X,)
ox, AX, ’
where P is the predicted failure probability;

X: is the i-th input parameter;

AX; is the perturbation (typically 10% of the nominal value)

Elasticity coefficient (normalized sensitivity) [16]:

(loc) _
S =

320



[HOOPMATUKA TA MATEMATUYHI METOZI1 B MOJEJIFOBAHHI = 2025 = Tom 15, Ne 3

5o e X P

AX,/ "~ P ox,’
Xi

This metric shows the percentage change in the predicted failure probability resulting
from a 1% change in parameter X.

Global Sobol' sensitivity index (first-order) [17]:

Var, (EXz] [P|X,]
" Var(P)
where: #~i is the vector of all variables except X;;
Ex.ilPIXi) is the conditional expectation of P given X
Var(P) is the total variance of the output variable P

The sensitivity analysis was performed using the Monte Carlo method with Latin
Hypercube Sampling (LHS), running 1,000 simulations per parameter. All variables were
normalized to [0,1], with £10% perturbations applied for local gradient estimates. Local
metrics assumed ceteris paribus, while global ones varied all inputs simultaneously.

Three key metrics were used: local sensitivity gradients (change in failure probability
per unit input change), elasticity coefficients (in %), and first-order Sobol indices (Si). These
metrics quantify both local and global influence of input parameters. Results for the top eight
features are presented in Table 8.

B

Table 8.
Formal sensitivity metrics of the model to key input parameters
Parameter Afs’e/r1§i§\z(il‘r(;§al Elasticity (%) Sobol index (S1)
Oil temperature 0.027 21.3% 0.38
Coolant temperature 0.024 18.9% 0.31
Hull vibration 0.018 14.2% 0.22
Oil pressure 0.011 9.1% 0.12
Shaft rotation speed 0.009 7.8% 0.08
Insulation resistance 0.005 3.7% 0.05
Engine load 0.004 2.9% 0.03
Operating time (runtime N
hours) 0.003 2.4% 0.02

Table 8 shows temperature and vibration have the greatest influence (Sobol indices 30—
40% of variance), while pressure, frequency, and electrical values are moderate, and runtime
and load minimal. This supports focusing on high-impact parameters in SPP diagnostics.
Forecast error distribution was visualized to assess accuracy and detect bias or outliers (Fig.

9).
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Fig. 9. Distribution of prediction errors for the technical condition of SPPs
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Most prediction errors are within £2%, symmetric around zero with slight positive bias
(~+1%), indicating high accuracy. Narrow spread and no heavy tails confirm low risk of large
errors. Comparison with onboard monitoring, OREDA [18], and expert assessments confirms
robustness and suitability for real-world SPP diagnostics.

Table 9.
Comparison of model predictions with actual operational data
Time (hours) Predicted failures (%) Observed failures (%) Difference (%)
5000 5.2 5.5 0.3
10000 12.1 12.5 0.4
15000 19.3 19.8 0.5
20000 27.5 28.0 0.5
25000 35.4 36.0 0.6

Tables 9, 10 show high model accuracy with average deviation 5.2% (max 7%). Main
engine probability is overestimated by 5.8% from simplified load assumptions, cooling
system deviation (6.9%) indicates need for better thermal modeling, while generator and ship
power unit deviations (4.1% and 3.8%) are acceptable. Errors are <3.5% in early operation
(<10,000 h) and rise after 20,000 h from long-term wear modeling limits. Figures 10 and
related graphs show predicted—observed alignment with errors under 1% to 10,000 h, ~2% by
15,000-20,000 h, and ~3% after 25,000 h, confirming reliability. Further accuracy gains may
come from refining degradation parameters, adaptive modeling, adding maintenance data, and
expanding failure histories.
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Fig. 10. Evaluation of forecast reliability over time
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Table 10.

Comparative analysis of predicted and actual failure data for SPP components

Time Predicted failure Actual number of .
Component - . Difference (forecast error)
step probability failures
1 Fuel system 0.02 1 0.01
2 Cooling 0.06 2 0.02
system
3 Generator unit 0.05 3 0.00

The table shows predicted failure probabilities closely match actual data (max error
0.02), performing best on high-risk components. Independent test validation confirms strong
generalization. Table 11 demonstrates higher accuracy and lower deviation compared to CBR
and probabilistic networks, confirming model reliability and engineering adequacy.
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Table 11.
Diagnostic results of the model on the test dataset
Method Average accuracy (%) Standard deviation (%) Test set accuracy (%)
CBR 72.4 3.2 70.5
Probabilistic networks 78.3 2.7 76.8
Integrated mgthod (CBR + 25.9 )1 R72
Bayes + simulation)

The integrated method demonstrates the highest accuracy (87.2%) on the test dataset,
with the lowest standard deviation (2.1%), indicating the model's robustness. For final
reliability assessment, the model’s predicted failure probabilities were compared with actual
operational data across equipment lifecycle stages. This revealed potential systematic
deviations and confirmed alignment with real conditions. Results are shown in Figure 11,
depicting failure probability versus operating time from both model and observations.

1 - Model forecast

-
351 2-ractual data
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Probability of failure (%)
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T T T T T T T T T
5000 7500 10000 12500 15000 17500 20000 22500 25000
Operating time (hours)

Fig. 11. Deviation graph between model and actual data

The graph shows strong agreement between predicted and actual failure data from 5,000
to 25,000 hours, with maximum deviation below 0.6%, confirming high accuracy. The linear
trend reflects steady failure probability growth, while slight deviations after 20,000 hours may
stem from underestimating nonlinear degradation. This supports the model’s reliability and
suitability for technical monitoring.
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Fig.12. Correlation between forecasted and actual failure data of the SPP
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Figure 12 shows a strong correlation (R = 0.99) between predicted and observed failures
with minimal bias and narrow confidence intervals, confirming model accuracy and
robustness. The integrated CBR approach provides stable risk assessment. Robustness tests
with 1-10% Gaussian noise on key inputs confirm stability. Improvements may come from
adding dynamic parameters and more data.

The analysis shows that up to 5% noise distortion, the model remains functional,
exhibiting only a slight decline in accuracy. At 10% noise, a moderate increase in error (21%)
and a decrease in R? by 0.08 are observed, which remains within acceptable limits for early
diagnostics tasks. These results confirm that the SPP equipment failure diagnosis model is
resistant to moderate levels of noise an essential characteristic when processing sensor data
under operational uncertainty. Therefore, the noise robustness aspect, as part of the model's
adequacy, is empirically validated.

Table 12.
Impact of noise on the accuracy of spp equipment failure diagnosis model
Noise MAE
level (% MAE (no (with AI\(:[AE R? (no noise) R? (with noise) AR? (%)
noise) . (%)
of range) noise)
0% 0.061 0.061 0.00 0.82 0.82 0.00
2% 0.061 0.064 +4.9 0.82 0.80 2.4
5% 0.061 0.069 +13.1 0.82 0.78 —4.9
10 % 0.061 0.074 +21.3 0.82 0.74 -9.8

Conclusions. The study evaluated an intelligent SPP diagnostic model combining learnable,
probabilistic, and heuristic components, integrating sensor data, causality, and expert
knowledge. Validation via MAE, RMSE, R?, t-test, and chi-squared test confirmed reliability.

Sensitivity analysis highlighted temperature and pressure as key factors, with accuracy gains

saturating after 10,000 samples. The model meets engineering criteria—explainability,

robustness, reproducibility—and is suitable for intelligent monitoring and forecasting under
variable conditions.
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AJIEKBATHICTb TA BEPU®IKAIISA IHTEJEKTYAJBHOI JIATHOCTUYHOI
MOJAEJII CYJTHOBUX EHEPTETUYHHUX YCTAHOBOK

B. B. Buuyxanin, A. B. Buuyxanin

Hamionansauii yHiBepcuter «Oecbka Mol TeXHIKa
1, IlleBuenka mip., Oneca, 65044, Ykpaina
Email: v.v.vychuzhanin@op.edu.ua

Cyuacui cymHoBi eHeprernyHi ycraHoBku (CEY) (yHKIIOHYIOTP B yMOBaX arpecHBHOTO, 3MIHHOTO Ta
BHCOKOHABaHTa)KEHOTO MOPCHKOTO CEpeOBHINA, [0 BUMArae 3aCTOCYBAaHHS Cy4aCHHMX JIiarHOCTHYHHX 3ac00iB
JUIL PaHHBOTO BWSBJICHHS BIZIMOB 1 NPOTHO3HOTO TEXHIYHOTO OOCITYroBYBaHHS. Y CTarTi 3alpONOHOBAHO
IHTErpoOBaHy 1HTEJIEKTYaJIbHY MOJIEIb IIarHOCTUKH, SIKa MOEIHYE METOANW MAIIWHHOTO HAaBYAaHHS, IMOBIpHICHE
BHUCHOBYBAaHHS Ta EBPUCTHYHY JIOTIKYy Il 3a0e3MedeHHs SIK CTAaTUCTUYHOI TOYHOCTI, TaKk 1 IH)KEHEepHOI
aJleKBaTHOCTI. Moyienb Mae TPUPIBHEBY apXiTEKTypy: HaBuaubHUHA KoMroHeHT (CatBoost i HeHpOHHI Mepexi),
IMOBIpHICHMH KOMITOHEHT (0aiieciBChbKi Mepeki Ta MapKOBChKa JIOTiKAa) Ta €BPUCTUYHY CHCTEMY Ha OCHOBI
npenenentiB (CBR) 3 ekcriepranmu mpaBwiamu. [l HaBuaHHS Ta Banifanii Bukopucrano monax 22 000
peanbHUX 1 3MOJENBOBAHMX BHIAJKIB. 3BaXKCHE arperyBaHHs pe3yJbTaTiB yCiX KOMIIOHEHTIB 3a0e3redye
HaJliiiHe MpOrHO3yBaHHs WMOBiIpHOCTI BiaMoB. KinbkicHa orinka 3a Merpukamu MAE, RMSE, R?, recall 1 F1-
score IoKasye, [0 TiOpHIHa MOJIETb CYTTEBO MEPEBEPIIYE OKPEMi KOMIIOHEHTH, AOCATaloud TOYHOCTI 87,2% Ha
He3aJeXHil TecToBil BUOipmi. CTaTUCTUYHA IEpeBipKa 3a JOMOMOIoI0 t-KpUTepito, y?-aHalily Ta JOBIPUYHX
IHTEpBAIIB MATBEPKYE MEpeBary iHTErpPOBaHOTO MiAX0y. AHaI3 YyTIMBOCTI JEMOHCTPYE CTIMKICTh MOAei
JI0 3MiH MapaMeTpiB, IIyMy Y BXIJIHUX JaHUX Ta 0OCATIB HaBYaJIbHOI BUOiIpKU. HailOlnbly 4yTiuBICTh MOJENb
BUSIBJISIE JI0 TEMIIEPATYPHUX 1 BIOpaIlifHUX NaHWX, MIO y3TOMKYETHCS 3 iHkKeHepHOoro Jorikoro. ITicis 10 000
3pa3KiB CIOCTEPIraeThCsl eeKT HACHUCHHS, IO CBIYUTH MPO IOCATHEHHS MOpOry iH(pOpMATHBHOCTI ISt
3amanoi apxitekTypu. [IporHo3n Moesi TiCHO KOPemooTh 13 (akTHIHUMHU JaHUMHE 1po BiaMoBH (R = 0.99), mo
MiATBEPIKYE 11 aAeKBaTHICTh, IHTEPIPETOBAHICTh 1 MPAKTHUYHY LiHHICTH. J{0JaTKOBE TECTYBAaHHA 31 IITYIHUM
ITyMOM TiITBEPIKYE CTaOUIBHICTh MOJIEN B YMOBaX PEATbHUX CEHCOPHHUX MOXHMOOK. 3almporioHOBaHA MOIETh
BHCTYIA€ SK HANIHHUNA IHCTPYMEHT MIATPUMKH NPUHHATTS PIillleHb IS JIaTHOCTHKA Ta MPOTHO3YBAHHS
texHigHoro ctany CEVY, 31aTHa BUSBIATH K THIIOBI, TaK 1 KackamHi BiaMoBH. Lle mocmimkeHHsS poOUTh BHECOK
Y PpO3BUTOK IHTENEKTyaJlbHUX CHCTEM MOHITOPHHTY B MOPCBKill Tamy3i Ta CKIAQJHUX MPOMECIOBUX
CepeIOBHUINAX, NMPOIOHYIOYH KOMIUIEKCHY OCHOBY IS TEXHIYHOTO OOCIYrOBYBaHHS 32 CTAHOM 1 3HMIKCHHS
eKCILTyaTaI[iTHIX PU3HKIB.

KirouoBi cjioBa: iHTeleKTyaabHa MiarHOCTHKA, MPOTHO3YBAaHHS BiMOB, CYIOHOBI €HEpPreTHYHI YCTaHOBKH,
ribpumHa MOIeNb, OaleCiBCHKI MEpeKi, MAllITHHE HABYAHHS, METOJI TIPEIC/ICHTIB.

326



