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Assembly lines are generally accepted means of mass and serial production, and even used for 
the manufacture of small-batch products for individual orders. They are flow-oriented 
production systems. When (re)setting up an assembly line, the important task of balancing it 
always arises. It originated with the beginning of the use of assembly lines and consists in the 
rational distribution across jobs of the total workload required for the manufacture of a unit of 
production. This expedient helps to increase the capacity of the assembly line with some 
reduction in the requirements for the qualification of the workforce. During the first forty years 
of the assembly lines, only trial and error methods were used for balancing. Next other 
balancing methods were developed for different structures and operating conditions of the 
lines. The article proposes a method for controlling and regulating the incomplete production 
of a production line, which consists in the periodic redistribution of workers in workplaces, 
that is, in the redistribution of the incomplete production (in the opposite direction). The 
purpose of regulation is the approximate alignment of the generation of workplaces and the 
increase in productivity of the entire line, assuming that the workers do not enter the 
production line from the outside. The specific problem of the assembly line stability is solved 
by the methods of the Markov chain theory. A model of the assembly line as an absorbing 
Markov chain has been constructed. The statement proved in the work formulates the 
conditions under which the shop management can even out the workstations of the production 
line with a given accuracy using the reserve labor force. The represent of the production line by 
the Markov chain allows one to find the only number of workers that must be redistributed 
between workplaces in order to achieve the goal, and the required number of redistributions per 
shift. 
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Introduction 
 

In the cybernetic direction of scientific development, the problems of the production or-
ganization and control were initially distinguished by three trends [1]: the use of the theory of 
autoregulation methods, the use of the theory of information systems with feedback methods, 
biophysical modeling. Later, to study specific aspects of the production systems, including the 
production lines (PL) of the assembly, other non-named models were proposed, for example, 
stochastic models based on network representations [2], which can describe the assembly lines 
functioning in time and when describing to remove unrealistic assumptions about the determinis-
tic duration of technological transitions. During the first forty years of the assembly lines, only 
trial and error methods were used for balancing. Later, other balancing methods were developed 
for different structures and operating conditions of the lines. [3,4,5]. Нeuristic methods aimed at 
minimizing costs were considered [6], criteria for physical demand [7] and even individual or-
ders [8] were introduced. The proposed methods range from simple to fairly complex and time 
consuming, involving, for example, the use of genetic algorithms [9]. 

Throughout the extensive literature on this topic, assembly PL have not been considered 
as an absorbing Markov chain, even when methods of operations research were used to analyze 
production lines. Reviews of balancing methods [eg, 10-12] and analysis of the stability of the 
balance of submarines [13] do not contain a reference to such a model. Further it is shown how 
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to represent assembly lines by Markov chain. The representation is used to solve a problem re-
lated to the stability of assembly lines. 

 
Content statement of the problem 
PL assembly consists of linked workplaces (WP). At any moment taken as the initial one, 

each WP has a certain amount of work in progress, including zero. Due to a change in the efforts 
of workers and for other reasons, non-completed production moves from one WP to another. If 
the movement is not controlled, the uneven distribution of work in progress on the WP in sepa-
rate periods of time can lead to a decrease in the productivity of the line. 

Consider one way to control and regulate: in each period of time the master of the work-
shop adds workers to the “narrow” WP, removing them from the points of the line with zero 
work in progress. The number of those added and withdrawn are the same in all periods, so that 
in fact there is a redistribution of existing workers. The goal of the shop management in this case 
is the approximate alignment of the WP production, which improves the performance of the en-
tire line. 

The first task in the study of the issue raised is to find the conditions under which the 
shop management will be able to achieve their goals. Secondly, to achieve the goals, if possible, 
it is necessary to find the number of workers that should be withdrawn and transferred in each 
period, and the required number of periods per shift. 

The main (and real) assumption in these related tasks is that the number of workers is li-
mited from above by the allocated staff, workers do not receive from outside to the production 
line. For a still closer approach to reality, let us assume that the number of workers on a line is 
not forbidden to decrease for a certain period. This can be represented as a consequence of disa-
bility. We will also assume that it is possible to move labor from any WP to any other. To realize 
this possibility, organization of parallel WP is required. 

 
Mathematical wording 
It can be considered that redistributing additional labor between the WP, the master redi-

stributes (in the opposite direction) the work in progress. We represent the amount of unfinished 
production by vector strings, the i-th component of which corresponds to the unfinished produc-
tion at the i-th WP. Then е⃗ =   ⃦ei  ⃦ sets the incomplete production at various points of the produc-
tion line at the present time; с⃗ =   ⃦сi  ⃦ – incomplete production, added (and withdrawn) by the 
master in each period of time; g⃗ =   ⃦gi   ⃦ – the goal to which the master aspires. It is clear from 
the definition that е⃗ and g⃗ are non-negative, and с⃗ contains positive and negative components. 
If positive, this means an increase, and if negative, a decrease in uncompleted production (an in-
crease in labor force) at the i-th WP. 

Let pij denote the share of the j-th WP that has switched to the i-th WP during the period. 
Since 0 ≤ pij ≤1, we can consider pij as probabilities (most often, within the framework of the 
stated conditions, the values pij = 0 and pij ≅ 0.5 will occur). This allows you to apply the theory 
of Markov chains. The “states” of the chain are WP; the possibility of transfer of labor between 
any pair of WP means that these states are communicating. 

If the additional labor force is constant, then ij = 1 and the matrix P =   ⃦⃦⃦ pij    ⃦ is the 
matrix of transition probabilities of the ergodic chain. In the accepted assumptions, labor can de-
crease, therefore we denote Pп =   ⃦⃦⃦ pij    ⃦ and add a fictitious WP that collects all the disappearing 
labor. Then we obtain an absorbing chain with one absorbing state for which the ergodic hypo-
thesis [3] does not hold. Nevertheless, we first consider what the distribution of work in progress 
will be over n periods for the ergodic case under the assumption that the matrix Pn does not 
change during many transitions. 

Since the initial amounts are given by the vector е⃗, then after one period on the i-th WP 
there will be j∙ pij of work in progress. This means that the vector е⃗Р specifies the distribu-

tion of work in progress in one period; similarly, е⃗Р2 sets it in two periods, and е⃗Рs – in s pe-
riods. Thus, the labor force invested in the production line at the beginning changes the distribu-
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tion of the object of labor to с⃗ Рs after s periods, the investment in the first period changes the 
distribution to с⃗ Рs-1 and so on. Consequently, after s periods the total amount of work in 
progress at the production line will be 

 
                                                         m⃗ = е⃗Рs + Pk.                                                         (1) 

 
The first requirement for the total amount of work in progress is that the vector (1) must 

be non-negative for any s. With this restriction, it is necessary to provide m⃗  g⃗. 
The calculations for the case of the absorbing chain are formally similar. Since we are on-

ly interested in the labor force inside the production line, Pn plays the role of P in expression (1), 
and by analogy we arrive at the following: 

 
                                                           m⃗п = е⃗Рs

п
 + Pk

п.                                                   (2) 
 
Again it is necessary to require that m⃗п be non-negative for s any and converge to the 

goal g⃗. 
 
Stability conditions for production line 
When studying Markov absorbing chains, it is convenient to bring the matrix of transition 

probabilities to the canonical form 
 

Р =   ⃦   ⃦, 

 
when absorbing states are written first and form a unit matrix I, the remaining elements 

belong to the zero matrix 0, and R and Рп – non-negative matrices, including the probabilities of 
transitions from non-absorbing states. For the final absorbing chain Рs

п  0, because the process 
will necessarily fall into the absorbing state. It is also true [4] that the stronger statement is that 
the infinite series L = I + Рп + Р2 + … always converges to the limit (I – Рп)-1, therefore the fun-
damental matrix  

 
L = (I – Рп)-1 = I + Рп + Р2 + … 

 
plays an important role. 
After this, it is obvious that the first member of vector (2) tends to 0, and the second – to 

с⃗L. Therefore, to achieve the goal, it is necessary to fulfill the condition with с⃗L = g⃗, which 
means that if the goal g⃗ is attainable, then there is a single vector 

 
                                                                  с⃗ = g⃗(I – Рп),                                                            (3)  

 
leading to a goal. Substituting in the expression (2) instead of с⃗ its value (3), we get 
 

m⃗п = е⃗Рs
п

 + g⃗(I – Рп) k
п = е⃗Рs

п
 + g⃗(I – Рп

s+1)  0 
 

or                                                (g⃗Рп – е⃗)Рs
п ≤ g⃗       (for s  0).                                           (4) 

 
It is tediously in practice to check the entire mass of conditions recorded, so the following 

statement should be useful, limiting the number of conditions to be checked. 
S t a t e m e n t.  If, after k periods of redistribution of labor, work in progress chosen as a 

goal in any WP is not less than the labor intensity given by the vector (g⃗Рп – е⃗)Рk
п, then (4) is 

feasible for all s k. 



ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2021 ▪ Том 11, № 4 

265 

Р r o o f.  Denote by r⃗ = (g⃗Рп – е⃗)Рk
п. Then (g⃗Рп – е⃗)Рs

п = r⃗Ps-k
п, and the elements of 

the matrix Рп  of any degree do not exceed unity. Therefore, the components of the vector r⃗Ps-k
п 

are bounded above by the value  i|. Consequently, if the inequality i| ≤ min gi (or i| 
≤ gi, if the PL synchronization is perfect) is right, then the expression (4) is valid for s k, and 
since Рk

п  0, then r → 0. Hence, for sufficiently large k holds  i| ≤ min gi, and the assertion 
is proved. 

Now we have an effective procedure for checking conditions (4) in a reasonable number 
of steps. We calculate (g⃗Рп – е⃗)Рs

п for all s, starting with s = 0. If inequality (4) is violated for 
any s, then the goal g⃗ is unachievable. But if there is a vector (g⃗Рп – е⃗)Рs

п satisfying the condi-
tion of the statement, then it is never violated and, therefore, g⃗ is achievable. Often, calculations 
can be stopped earlier, and namely: if the calculated vector does not exceed the previous one, 
and expression (4) is true for any k. 

We will now solve the second of the assigned tasks – we will find what labor must be 
transferred to the PL during this period with the attainable goal g⃗. If 1⃗ is a column vector, all 
elements of which are equal to one, we can find с⃗1⃗, and this equals g⃗(I – Рп)1⃗. Let q⃗ = (I – 
Рп)1⃗  0. Then the total sum should be g⃗q⃗. This means that the column vector q⃗ turns the 
goal into labor, which must be moved along the PL each period. Since the working force disap-
pears from the system in a random absorbing chain, it is not surprising that с⃗1⃗ > 0. This means, 
however, that c ≥ 0, since g⃗(I – Рп) has a negative component. 

An interesting feature of solution (3) for PL is that с⃗ does not depend on the vector of 
the initial work in progress е⃗. 

 
Conclusion 

 
It is difficult to expect that a single model could describe all aspects of the functioning of 

a system. And in the absence of comprehensive, particular models should be applied for different 
categories of questions regarding the same system. In the light of such an approach to modeling, 
the proposed representation of production lines for assembly by Markov chains should help clari-
fy the processes occurring in the lines and, ultimately, their design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A.N. Tynynyka 

266 

References 
 

1. Гвишиани Д.М. Предисловие к кн.: Форрестер Дж. Основы кибернетики пред-
приятия. (Индустриальная динамика). М.: Прогресс, 1971. 340 с.  

2. Sarin S.C., Erel E., Dar-El E.M. A methodology for solving single-model, stochastic 
assembly line balancing problem. Omega. 1999. Vol.27. P. 525-535. 

3. Chiang W.C., Urban T.L. A hybrid heuristic for the stochastic U-line balancing 
problem. University of Tulsa Working Paper. 2002. 

4. Nicosia, G., Pacciarelli, D., Pacifici, A. Optimally balancing assembly lines with 
different workstations. Discrete Applied Mathematics. 2002. V.118. P. 99-113. 

5. Scholl, A., Becker, C. State-of-the-art exact and heuristic solution procedures for 
simple assembly line balancing. Jenaer Schriften zur Wirtschaftswissenschaft, 2003. 

6. Amen, M. Heuristic methods for cost-oriented assembly line balancing: A comparison 
on solution quality and computing time. International Journal of Production 
Economics. 2001.V. 69. P. 255-264. 

7. Carnahan B.J., Norman B.A., Redfern M.S. Incorporating physical demand criteria 
into assembly line balancing. IIE Transactions. 2001. V.33. P. 875-887. 

8. Bukchin J., Dar-El E.M., Rubinovitz J. Mixed-model assembly line design in a make-
to-order environment. Computers & Industrial Engineering. 2002. V.41. P. 405-421. 

9. Sa V.R.A, Mathewa J., Josea P., Sivan G. Optimization of Cycle Time in an Assembly 
Line Balancing Problem. Procedia Technology. 2016. V.25. P. 114-1153. 

10. Ajenblit D.A., Wainwright R.L. Applying genetic algorithms to the U-shaped 
assembly line balancing problem. Proceedings of the 1998 IEEE International 
Conference on Evolutionary Computation. 1998. P. 96-101. 

11. Awasare A.D., Panchal J.R. Application of operation research techniques for solving 
assembly line balancing problem. International Advanced Research Journal in 
Science, Engineering and Technology. 2017. V. 4 (2). P. 29-31. 

12. Becker C., Scholl A. Survey on problems and methods in generalized assembly line 
balancing. European Journal of Operational Research. 2006. V.168. P. 694-715. 

13. Rekiek B., Dolgui A., Delchambre A., Bratcu A. State of art of optimization methods 
for assembly line design. Annual Reviews in Control. 2002. V.26. P. 163-174. 

14. Scholl A., Becker C. State-of-the-art exact and heuristic solution procedures for simple 
assembly line balancing. Jenaer Schriften zur Wirtschaftswissenschaft. 2003. 

15. Batta O., Dolgui A. A taxonomy of line balancing problems and their solution 
approaches. International Journal of Production Economics. 2013, V.142 (2). P. 259-
277.  

16. Boysen N., Fliedner M., Scholl A. A classification of assembly line balancing 
problems. European Journal of Operational research. 2007. V.183. P. 674-693.  

17. Boysen N., Fliedner M., Scholl A. Assembly line balancing: Which model to use when 
Int. J. production Economics. 2008. V.111. P. 509-528.  

18. Sotskov Y., Dolgui A., Portmann M.C. Stability analysis of optimal balance for 
assembly line with fixed cycle time. European Journal of Operational Research. 
2003. 

 
 
 
 
 
 
 
 
 



ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2021 ▪ Том 11, № 4 

267 
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ЯК ПОГЛИНАЮЧОГО МАРКОВСЬКОГО ЛАНЦЮГА 
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Складальні лінії є загальноприйнятим засобом масового і серійного виробництва і навіть 
застосовуються для виготовлення продукції невеликого обсягу за індивідуальними 
замовленнями. Вони представляють собою орієнтовані на потік виробничі системи. При 
(пере)налаштуванні складальної лінії завжди виникає важлива задача її балансування. 
Вона з’явилася в переліку задач з початком використання складальних ліній і полягає в 
раціональному розподілі по робочих місцях повного робочого навантаження, 
необхідного для виготовлення одиниці продукції. Цей інструмент допомагає підвищити 
пропускну спроможність складальної лінії при деякому зниженні вимог до кваліфікації 
робочої сили. Протягом перших сорока років існування складальних ліній для 
балансування використовувалися тільки методи проб і помилок. Потім були розроблені 
інші методи балансування для різних структур і умов роботи ліній. У статті 
запропоновано спосіб контролю і регулювання незавершеного виробництва потокової 
лінії, що полягає в періодичному перерозподілі робочих по робочих місцях, тобто в 
перерозподілі незавершеного виробництва (в зворотному напрямку). Мета регулювання 
– наближене вирівнювання вироблення робочих місць і підвищення за рахунок цього 
продуктивності всій лінії при допущенні, що ззовні робочі на потокову лінію не 
надходять. Конкретна задача стійкості лінії складання вирішується методами теорії 
марковських ланцюгів. Побудована модель потокової лінії складання як поглинаючого 
марковського ланцюга. Доведене в роботі твердження формулює умови, при яких 
керівництво цеху може з заданою точністю вирівняти вироблення робочих місць 
потокової лінії, використовуючи резервну робочу силу. Подання потокової лінії 
марківськім ланцюгом дозволяє знайти ту єдину кількість робочих, яка повинна 
перерозподілятися між робочими місцями для досягнення мети, і потрібне число 
перерозподілів за зміну. 
Ключові слова: потокова лінія складання, моделювання, марківський ланцюг, 
регулювання, стійкість. 
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