0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

DOI10.15276/imms.v11.n04.268 Informatics and Mathematical Methods in Simulation
VJIK 004.032.24:519.612.2 Vol 11(2021). No. 4. pp. 268-277

EVALUATING THE EFFECTIVENESS OF THE IMPLEMENTATION OF
COMPUTATIONAL ALGORITHMS USING THE OpenMP STANDARD FOR
PARALLELIZING PROGRAMS

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

Dniprovsky State Technical University, Dniprobudivska str., 2,
Kamianske, 51918, Ukraine olalzh@ukr.net

The relevance of the work lies in the need to increase the efficiency of computer modeling
through the use of progressive hardware and software parallelization and synchronization
of calculations on modern computers with multi-core architecture. The purpose of the work
is to increase the speed of computational algorithms of Thomas algorithm by using
advanced technologies for programming parallel computing. Serial and parallel algorithms
for software implementation of Thomas algorithm have been developed; a comparative
evaluation of the implementation efficiency (speed of execution) of these algorithms by
means of an open standard for parallelizing OpenMP programs for a significant (up to
5%107) SLAE order was performed. The use of progressive programming technologies in
the implementation of the indicated methods for solving SLAEs made it possible to
increase the computation speed by 1,9-2,9 times. The obtained results correspond with the
known literature data. In this work, the time values of the software implementation of
sequential and computational algorithms of Thomas algorithm for SLAEs of significant
order were obtained for sequentially and parallelized into two streams using OpenMP tools.
The expediency of such parallelization for SLAE of the order of more than 2,5x105 is
shown. The practical significance of the work lies in the use of the results obtained in the
numerical study of stationary and non-stationary, linear and nonlinear processes in
mathematical modeling problems, where the multiple solution of a significant order SLAE
is the most resource-intensive stage.

Keywords: a computational algorithm, SLAE numerical solution, Thomas algorithm,
speed, parallel computing, OpenMP, speeding up the computations.

Introduction

The rapid development of computer technology, including Improving the PC
architecture through the use of ultrafast multi-core processors, increasing cache and system
memory, etc. serves as a constant incentive for the synchronous development of software
corresponding to these requirements. In addition, the modern tasks of computer modeling,
requiring the processing of colossal amounts of data, are ahead of the performance
capabilities of single-processor (single-core) computers. The aforementioned served as an
impetus for increasing the efficiency of computer modeling and the associated computational
experiment through the use of rapidly developing parallel computing technologies.

Thus, the researchers are facing the urgent task of improving the efficiency of
computer modeling by increasing the speed of computational algorithms by using modern
hardware and software parallelization and synchronization of calculations.

The object of research is the Thomas Algorithm or the Tridiagonal Matrix Algorithm.

The subject of the research is the means of increasing the efficiency (increasing speed)
of various modifications of Thomas algorithm by their implementation on computers with a
multicore architecture.

The purpose of the work is to increase the efficiency of computer modeling by
increasing the speed of computational algorithms by using advanced technologies for
programming parallel computing and their implementation on modern computers with multi-
core architecture.

268

mailto:olalzh@ukr.net

I[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJJIEJIFOBAHHI = 2021 = Tom 11, Ne 4

To achieve this goal, the following tasks are set before work:

— develop sequential and parallelized algorithms for software implementation of
Thomas algorithm;

— perform a comparative assessment of the implementation efficiency (speed of
execution) of these algorithms, including using OpenMP (Open Multi-Processing) open
standard tools for a significant order of SLAE in IDE (Integrated Development Environment)
MVS (Microsoft Visual Studio) C ++;

— develop recommendations regarding the appropriateness of using a parallel
algorithm of Thomas algorithm in the numerical study of all kinds of processes in
mathematical modeling problems.

Formal problem statement. As you know, most mathematical models are represented
by systems of linear and nonlinear differential equations, the basis of the methods for solving
which is solving SLAE (Systems of Linear Algebraic Equations).

Among the widespread computational algorithms used in the numerical solution of
SLAEs, the most widely used is Thomas algorithm, which is a special case of the Gauss
method with sequential exclusion of unknowns and used to solve systems of equations with a
three-diagonal matrix [1]. Matrices of this type also arise in solving spline interpolation
problems [2].

The main objective of the work is to further develop approaches to improve the
efficiency of computer modeling using parallel computational algorithms of Thomas
algorithm by implementing them on computers with a multi-core architecture.

In this paper, we set the task of comparatively evaluating the efficiency (speed of
execution) of a serial Thomas algorithm parallel and parallelized into two streams using the
open standard OpenMP algorithm for a significant (up to 5x10") SLAE order.

Literature review

One of the most common methods for classifying computer architectures is Flynn's
taxonomy systematics, in which the main attention when analyzing the architecture of
computer systems is paid to the methods of interaction between sequences (streams) of
executed commands and processed data [3].

This classification uses two concepts to build parallel organizations — the instruction
stream and the data stream [4].

Depending on the multiplicity of these flows, Flynn proposed the following four
classes of organization of architectures [5].

1. SISD (Single Instruction, Single Data) is a traditional von Neumann architecture
computer with one processor, executing one command after another in succession, working
with one data stream. This type includes pipelined, super-scalar and VLIW (Very Long
Instruction Word) processors.

2. SIMD (Single Instruction, Multiple Data) is one of the most common types of
parallel computers. This class includes vector processors, ordinary modern processors, when
they execute vector extension commands, matrix processors. Here, one processor loads one
command, the data set for them, and performs the operation described in this command on the
entire data set at the same time.

3. MISD (Multiple Instruction, Single Data) is, in fact, a hypothetical class, since real
systems of representatives of this type do not yet exist. Some researchers attribute to it
conveyor computers.

4. MIMD (Multiple Instruction, Multiple Data) is another common type of parallel
computer, including multiprocessor systems, where processors process multiple data streams.
This, as a rule, includes traditional multi-processor machines, multi-core and multi-threaded
processors, as well as computer clusters.

269

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

All modern advanced processors, both general and special purpose, fall into the
MIMD class [5]. They simultaneously execute several independent threads of instructions at
once, providing hardware parallelism.

Concurrency is a complex problem in solving interdisciplinary direct and inverse
super-tasks related to mathematical modeling, which is currently the main tool for obtaining
new fundamental knowledge and optimizing industrial production [6]. Programming parallel
systems is moving forward rapidly, introducing parallelism wherever performance matters.
These systems provide all models with their own set of computing environment of the
enterprise, including application scalability, increased resource utilization, faster execution
time [7]. Therefore, the use of parallel programming is of considerable interest here.

Today, there are a number of high-performance specialized BLAS (Basic Linear
Algebra Subprograms) libraries for optimizing and accessing mathematical calculations.
BLAS libraries, such as Intel MKL (Math Kernel Library), AMD (Advanced Micro Devices,
Inc.) CML (Core Math Library), or CUBLAS (CUda Basic Linear Algebra Subroutines) for
NVIDIA GPUgs, are configured for their own architecture. All vendors optimize BLAS code
specifically for their base equipment to achieve maximum performance [8].

For scientific, engineering and financial calculations requiring maximum performance,
the most popular is the Intel MKL library of optimized and parallelized mathematical
procedures, compatible with advanced development environments and compilers.

Of greatest interest for the present work is the well-known [9] similar study of the
performance of Thomas algorithm, carried out using the Intel MKL library.

The HPC (The High Performance Computing) community has developed a wide
variety of parallel programming models to simplify the expression of the required levels of
parallelism for using hardware capabilities. So, to provide parallel computing in C ++, which
is currently one of the most popular and popular universal object-oriented languages, there are
several software APIs (Application Programming Interface) [10]: OpenMP, Cilk Plus, C ++
11, POSIX threads (PThreads), Intel TBB, OpenCL, Microsoft PPL (Parallel Patterns
Library), etc. Each of them has its own unique set of features and benefits. Also, these tools
have certain functionalities implemented in various interfaces. For example, most of them
support both data parallelism and task parallelism patterns for the CPU.

The most functional and accessible OpenMP interface [11], considered in this study,
offers a simple mechanism for implementing parallel computing in applications using
multithreading, in which the «master» thread creates a set of «slave» flows and the task is
distributed between them. The OpenMP specification is being developed by several large
manufacturers of computer hardware and software, whose work is regulated by the non-profit
organization OpenMP ARB (Architecture Review Board) [12]. The OpenMP standard is
supported by Fortran, C/C ++ and is formulated as an API for writing portable multi-threaded
applications on shared-memory multiprocessor systems (SPMD).

The OpenMP library is actively developing to date (now the standard of 2018 version
5.0 is relevant) [13]. At the same time, the MVS C ++ compiler only supports version 2.0,
while GCC (GNU Compiler Collection) supports version 4.5 [14].

Portability is associated with the OpenMP programming model, which provides a
platform-independent set of compiler directives, function calls and environment variables that
clearly «tell» the compiler where and how to use parallelism in the application. Thus, the
developer is not burdened by additional difficulties associated with the problems of creating,
synchronizing, balancing the load and destroying threads.

OpenMP technology aims to ensure that the user has one version of the program for
parallel and sequential execution. However, it is possible to create programs that work
correctly exclusively in parallel mode, and in sequential mode give a different result. In
addition, due to the accumulation of rounding errors, the result of performing calculations
using a different number of threads may differ in some cases, which must be taken into
account when analyzing the results of a computational experiment.

270

I[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJJIEJIFOBAHHI = 2021 = Tom 11, Ne 4

Main part

Materials and Methods. As you know, Thomas algorithm itself is an effective
method for classical type architectures, unsuitable for productive implementation even on
single-core superscalar systems that support parallelism at the instruction level. To parallelize
a SLAE solution with a three-diagonal matrix, use its parallel substitute. Therefore, the study
of the scalability efficiency of the classical Thomas algorithm, as an absolutely non-parallel
algorithm, is not of practical interest. At the same time, of considerable interest is the analysis
of the scalability of parallel versions of the method relative to its classical uniprocessor
implementation [15].

In this case, the complexity of the sequential method, characterized by the time of
solving SLAE of order n, is determined [9] by the value 10nt, while for the parallel two-sided
Thomas algorithm this value is Snt+3. It is easy to see that the theoretical acceleration of the
calculation process due to parallelization cannot exceed two.

Also, according to Amdahl’s law [16], used to estimate possible acceleration in
parallel data processing by more than one module, the theoretical limit for acceleration due to
parallelization into two streams (for this work) is equal to two. Even such an acceleration
value will provide a significant increase in the efficiency of computer modeling as a whole,
which, in fact, is the goal of this work.

As mentioned above, in this paper, to parallelize the software implementation of the
two-sided Thomas algorithm, we used the most popular OpenMP library in mathematical
calculations, which provides an accessible and multifunctional parallel computing interface.

A significant part of OpenMP functionality is implemented using compiler directives
of the form:

#pragma omp <directive> [modifier[[,] modifier]...],

allowing parallel computing of different sections of code.

The number of threads in a group running in parallel can be controlled in several ways.
One of them is the use of the environment variable OMP_NUM_THREADS. Another way is
to call omp set num threads (). Another way is to use the num threads expression in
combination with the #pragma omp parallel directive [11]. In this computational experiment,
the second of the approaches was used.

During the execution of the program, the values of the computation time were
recorded using the steady clock class from the C ++ <chrono> library, which represents a
monotonous clock that is not related to the system time and therefore most suitable for
measuring the intervals under study.

Experiments and results. When performing this kind of research, it is assumed that
the processors available in the structure of the computer are equal in performance, are equal in
access to the shared memory, and the access time to the memory is the same. The above set of
requirements is satisfied by the multi-core processors of modern PCs, in which each core is an
almost independently functioning computing module. Thus, such studies must be carried out
exclusively on systems with multi-core (from two cores) CPUs, such as, for example, in this
case (Table 1).

For the purpose of conducting research, the functions of the software implementation
of the classical sequential right-run method and the counter-parallel (parallel combination of
left and right) Thomas algorithm parallel to two streams were developed.

In the study, the size of SLAEs was varied in the range of 1x10°—5x10’, and the
values of the coefficients of the equation were randomly generated (taking into account the
conditions for the diagonal prevalence of the matrix) into variables of standard, hardware-
supported type double.

271

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

Table 1.
Computing Experiment Infrastructure

CPU Intel Core 15-8400 (6 cores,
2.8 GHz), cache 9 MB
ey
Operating system (OS) Microsoft Windows 10
Development environment (IDE) MVS C++15.9
Programming technology OpenMP, v.2.0

The calculation results (Table 2) reflect the time of the software implementation of the
sequential algorithms of the right-eliminations and two-sided Thomas algorithm, as well as
the options for the two-sided Thomas algorithm parallel to two streams depending on the
order of the SLAE.

Table 2.
Results of a computational experiment
Sequential Algorithms Parallel Algorithm
SLAE right- . .
order [eliminations| ™o 519 s1=1/2 | VO oy | s3=203
(11, ¢) (12, c) (13, ¢)

100000 | 0,001969]0,001070]1,84019| 0,001890 | 1,04180 [0,56614
200000 | 0,003778]0,002325]1,62495| 0,002502 | 1,50999 [0,92926
300000 | 0,005328]0,003411(1,56201| 0,003177 |1,67705 | 1,07365
400000 | 0,007292 0,004712|1,54754| 0,003646 | 2,00000 | 1,29238
500000 | 0,009424]0,005836]1,61480| 0,004201 |2,24328 [1,38919
600000 | 0,010809]0,007042]1,53493| 0,004684 |2,30764 [1,50342
700000 | 0,012564]0,008276]1,51812| 0,005502 | 2,28353 | 1,50418
800000 | 0,014579]0,009442]1,54406| 0,005996 |2,43145 [1,57472
900000 | 0,016272 0,011038]1,47418 | 0,006652 |2,44618 | 1,65935
1000000 | 0,018275]0,011839(1,54363| 0,007466 |[2,44776 | 1,58572
2500000 | 0,047037]0,030118]1,56176| 0,017072 |2,75521 [1,76418
5000000 [0,092932 [0,058827(1,57975| 0,032406 |[2,86774 | 1,81531
10000000 | 0,184777 [0,119720(1,54341] 0,064571 |2,86161 | 1,85408
15000000 0,301776 [0,198740(1,51845] 0,104556 | 2,88626 | 1,90080
20000000 0,370866 [0,238921[1,55225| 0,127913 [2,89936 | 1,86784
35000000 0,654413 |0,418034 |1,56545| 0,237180 | 2,75914 | 1,76252
50000000 0,942063 |0,610584 |1,54289 | 0,367498 | 2,56345 | 1,66146

The most relevant results illustrating the novelty and significance of the work are
presented in Fig. 1—3.

272

I[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJJIEJIFOBAHHI = 2021 = Tom 11, Ne 4

1

&
0,9
0,8 //
207 /
206 / /.
i W
= 05 = ——1il
204 /
g X _?‘P(_‘,é}_ —il—12
o 03 T 13
0,2 o= K
0’1 i — ;‘.a
0 ."‘9’" — T
0,0E+00 2,0E+07 4,0E+07 6,0E+07
SLAE order

Fig. 1. The dependence of the solution time on the SLAE order in the range of 1x105—5%107
for the implementation of Thomas algorithm: t1 — right-eliminations (sequential calculation);
t2 — two-sided (sequential calculation); t3 — two-sided (parallel calculation)

0,008
0,007
0,006 /
0,005 /
5 /‘(.'/JF/HI —pt]
0,003 : = —12
8 0,002 /“f —tr—13
0,001 |l/

0 ;
0,0E+00 1,0E4#05 2,0E+05 3,0E+05 4,0E+05 5,0E+05

SLAE order

mputation time
=]
(=]
)
=

Fig. 2. The dependence of the solution time on the SLAE order in the range of 1x105—4x105
for the implementation of Thomas algorithm: t1 — right-eliminations (sequential calculation);
t2 — two-sided (sequential calculation); t3 — two-sided (parallel calculation)

3,50000

3,00000

2,50000 @
2,00000
_—-.

1,50000 —p—)
1,00000 =fl=:s3

Acceleration

0,50000

0,00000 -
0,0E+00 2,0E+07 4,0E+07 6,0E+07

SLAE order

Fig. 3. The dependence of the parallel calculation acceleration on the SLAE order with
respect to the sequential implementation of the right-eliminations (s2) and two-sided (s3)
Thomas algorithm

273

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

Discussion

As the research results showed, the use of the two-sided Thomas algorithm (without
using the OpenMP parallelization tools), instead of the traditional method of right-elimination
(or left, it doesn't matter) Thomas algorithm, allows even on single-core architectures to
increase the speed of the computational algorithm as a whole (Fig. 1, 2). Thus, the
acceleration (s1) due to such a replacement in the studied range of changes in the order of
SLAEs amounted to 1,47—1,84.

For any of the considered implementations of Thomas algorithm, the maximum
computation time under the conditions of the used infrastructure of the computational
experiment in the studied range of changes in the order of SLAEs did not exceed one second
(Fig. 1).

Realization of parallel computations using the two-sided Thomas algorithm (using
OpenMP parallelization tools) instead of the traditional one allows speeding up the
computation process (s2) by 1,04—2,90 times in the same range of order changes of SLAEs
(Fig. 3).

Not so unambiguous is the conclusion about the effectiveness of a parallelized
algorithm (counter-running) and the use of special software tools for such parallelization
compared to a serial analog in the considered range of matrix size variation. So, under the
conditions of the used infrastructure of the computational experiment for SLAE of the order
of less than 2,5%10° , the execution time of parallel calculations when implementing the two-
sided Thomas algorithm will be longer than for the traditional sequential calculation
procedure, i.e. t3> t2 (Fig. 2) and s3 <1 (Fig. 3). For more significant values (>2,5%10°) of the
SLAE order, the comparative calculation time becomes shorter and acquires predictable
values, and the acceleration s3 exceeds unity (i.e., the process begins to accelerate) and
reaches a value of 1,9.

The slowdown of calculations for SLAEs of the order of less than 2,5x10° is explained
by the use of computer time to create computational flows (values 6 are comparable or exceed
the time of direct calculations) with a relative slowdown in the software implementation of
the parallelized algorithm. Thus, the issue of the inappropriateness of using multi-core
architectures and parallel technologies to a certain order of SLAESs is being updated.

As can be seen (Fig. 3, graph s3), the results obtained in the present study [17, 18] are
fully consistent with Amdal’s law, as well as with the results of similar studies by Russian
scientists [9] obtained on a PC of similar architecture using Intel MKL math library.

In general, irrespective of the approach to the implementation of one or another of the
studied algorithms of Thomas algorithm, with the increase in the size of the matrix, the
computation time also increases almost in direct proportion. However, the acceleration of
calculations due to the use of parallelized algorithms at significant orders of magnitude
(>2.5x10%) SLAE always exceeds unity (Fig. 3), which means that they favor the use of such
algorithms in practice when processing significant amounts of data.

Conclusion

Thus, the feasibility of using advanced hardware and software to increase the efficiency
of a computational experiment by organizing parallel computing using modern multi-core
architectures is proved.

The use of these programming technologies in the implementation of the common
methods for solving SLAEs made it possible to increase the computation speed by 1,9—2,9
times.

However, the development of algorithms and programs oriented to multi-threaded
computing requires higher qualifications of both an applied mathematician and a programmer,
and the developed applications turn out to be rigidly tied to a specific computer computing

274

I[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJJIEJIFOBAHHI = 2021 = Tom 11, Ne 4

architecture. As studies have shown, overcoming these difficulties will be advisable only
when developing computer models with a significant amount of arithmetic calculations.

The scientific novelty of the work lies in the further development of progressive
approaches to increasing the efficiency of computer modeling using parallel computational
algorithms of Thomas algorithm by their implementation on computers with multicore
architecture. For the first time, the values of the software implementation time of sequential
and parallelized into two streams using OpenMP computational algorithms for Thomas
algorithm for a significant (up to 5x10”) SLAE order are obtained. The expediency of such
parallelization for the order of SLAEs of more than 2,5x10° is shown.

The practical significance of the work lies in the use of the results obtained in the
numerical study of stationary and non-stationary, linear and nonlinear processes in
mathematical modeling problems, where the multiple solution of SLAEs of a significant order
is the most resource-intensive stage.

The prospects for further research are seen in the development of such studies in the
context of a deeper parallelization of the considered computational algorithm through the use
of a more laborious, but also more scalable modification of Thomas algorithm, as well as the
use of other, no less advanced, software tools for implementing parallel computing processes.

References

1. Samarskij A.A. Teorija raznostnyh shem. M.: Nauka, 1989. 616 s.

Verzhbickij V.M. Chislennye metody (matematicheskij analiz i obyknovennye
differencial'nye uravnenija). M.: Vysshaja shkola, 2001. 382 s.

3. Gergel' V.P., Strongin R.G. Osnovy parallel'nyh vychislenij dlja
mnogoprocessornyh vychislitel'nyh sistem. N. Novgorod: NNGU im. N.L
Lobachevskogo, 2003. 184 s.

4. Ngoko Y., Trystram D. Revisiting Flynn’s Classification: The Portfolio Approach.
Euro-Par 2017: Parallel Processing Workshops, University of Santiago de
Compostela, 28-29 August 2017. Santiago de Compostela. Springer, 2017. P. 227—
239. DOI: https://doi.org/10.1007/978-3-319-75178-8 19.

5. Kudin A.V. Linjov A.V. Arhitektura i operacionnye sistemy parallel'nyh
vychislitel'nyh system. N. Novgorod: NNGU im. N.I. Lobachevskogo, 2007. 73 s.

6. II'in V. On the Parallel Strategies in Mathematical Modeling. Parallel
Computational Technologies: 11th International Conference PCT 2017, Kazan, 3—
7 April 2017. Springer-Verlag, 2017. P. 73—85. DOI: https://doi.org/10.1007/978-3-
319-67035-5 6.

7. Kvasnica P., Kvasnica I. Distributed Mathematical Model Simulation on a Parallel
Architecture. Journal of Computing and Information Technology. 2012. Vol. 20, Ne
2. P. 61-68. DOI:10.2498/cit.1001771.

8. Gepner P., Gamayunov V., Fraser D. Effective implementation of DGEMM on
modern multicore CPU. Procedia Computer Science. 2012. Vol. 9. P. 126-135.
DOI: 10.1016/j.procs.2012.04.014.

9. Barkalov K.A. Metody parallel'nyh vychisleni. N. Novgorod: NNGU im. N.L
Lobachevskogo, 2011. 124 s.

10. Salehian S., Liu J., Yan Y. Comparison of Threading Programming Models. /EEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Lake Buena Vista, USA, 29 May-2 June 2017. IEEE, 2017. P. 766—
774. DOI:10.1109/IPDPSW.2017.141.

275

https://doi.org/10.1007/978-3-319-67035-5_6
https://doi.org/10.1007/978-3-319-67035-5_6

0.0. Zhulkovskyi, I.I. Zhulkovska, V.V. Shevchenko

276

11.

12.

13.

14.

15.

16.

17.

18.

Antonov A.S. Parallel'noe programmirovanie s ispol'zovaniem tehnologii OpenMP.
M.: MGU, 2009. 77 s.

Grudzinskij D.A. Celesoobraznost' sozdanija standarta OpenMP dlja obektno-
orientirovannyh jazykov programmirovanija na primere Java. Vestnik
Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. Ne 3(2). S. 201-206.
Open MP Technical Report 7: Version 5.0 Public Comment Draft, July 2018. URL:
https://www.openmp.org/wp-content/uploads/openmp-TR7.pdf.

Yliluoma J. Guide into OpenMP: Easy multithreading programming for C++. URL:
https://bisqwit.iki.fi/story/howto/openmp/.

Frolov A.V., Voevodin V.V, Teplov A.M. Progonka, tochechnyj variant. URL:
https://algowiki-project.org.

Popov G., Mastorakis N., Mladenov V. Calculation of the acceleration of parallel
programs as a function of the number of threads. ICCOMP'10 Proceedings of the
14th WSEAS international conference on Computers: part of the 14th WSEAS
CSCC multiconference, Corfu Island, Greece, 23-25 July 2010. Stevens Point:
World Scientific and Engineering Academy and Society, 2010. Vol. II. P. 411-414.
Zhulkovskyi O. Shevchenko V., Zhulkovska I. Use of modern software increases
the efficiency of computer simulation. 36iprux mes VI Bceykp. nayk.-npaxm. KoHep.
Monodux Haykosyie «lugpopmayitini mexnonoeii — 2019». K.: Kui. yH-T iM. b.
['pinuenka, 2019. C. 119, 120.

Shevchenko V.V. Zhul'kovskij O.A., Zhul'kovskaja LI, Ocenka programmnyh
sredstv povyshenija jeffektivnosti vychislitel'nogo jeksperimenta. Naukova
Ukraina: Zbirnik statej V Vseukr. nauk. konf. studentivy. Dnipro: Akcent PP, 2019.
S. 303-305.

https://www.openmp.org/wp-content/uploads/openmp-TR7.pdf
https://bisqwit.iki.fi/story/howto/openmp/
https://algowiki-project.org/

I[HOOPMATHUKA TA MATEMATHUYHI METOZI1 B MOJJIEJIFOBAHHI = 2021 = Tom 11, Ne 4

OIIHKA E®EKTUBHOCTI PEAJI3AIIT OBYUCJIIOBAJIBHUX
AJITOPUTMIB 3ACOBAMU CTAHJAPTY OpenMP
JJIS1 PO3TTAPAJIEJTIIOBAHHS ITPOT'PAM

0.0. Xynbkosebkui, [.I. XKynbkoBcbka, B.B. IlleBuenko

JIHIMPOBCHKMI ep)kaBHUIA TEXHIYHUH YHIBepcUTET, BYII. JIHinpoOymiBChKa, 2,
Kam’sHcebke, 51918, Ykpaina olalzh@ukr.net

AKTyaJbpHICT POOOTH MOJISATAE B HEOOXITHOCTI IMiIBUIIEHHS €(PEKTUBHOCTI KOMITIOTEPHOTO
MO/ICIIFOBaHHS 32 PaXyHOK BUKOPHCTAHHS MPOrPECHBHUX alapaTHUX 1 MPOrpaMHUX 3ac00iB
pO3MapajenoBaHHs 1 CHHXpOHi3amii OOYMCIEHhP Ha CyYaCHHX KOMII IOTEpiB 3
OaraTosIepHOI0 apXiTeKTyporo. Meta poOOTH — 30iIbIIEHHS MBUIKOIIT O0UHCITIOBATEHUX
aNTOPUTMIB METOAY IIPOTOHKM UUISIXOM BHKOPHUCTaHHS TPOTPECUBHHUX TEXHOJOTIH
MpOTpaMyBaHHS TapaleNbHuX o04ucieHb. B poOOoTi BUKOPUCTOBYBAJWCS METOIN
MaTpu4yHOi anreOpu, mapagebHUX OOYHCIICHb, aHaNi3y e(EeKTHBHOCTI alrOpUTMIB 1
nporpam. Po3pobieHo mocnizioBHi i po3mapajieneHui alropuTMH MPOTrpaMHOl peasizanii
METO/ly IPOT'OHKH;, BUKOHAHA IOPIBHSUIbHA OLiHKAa €(eKTHBHOCTI peanizamii (IIBHUAKOCTI
BHUKOHAHHS) JIaHUX JITOPUTMIB 3aC00aMU BIAKPUTOTO CTAHIAAPTY IS PO3MapajciiOBaHHI
nporpam Open Multi-Processing nnst 3Hagnoro (mo 5x107) mopsimky cUCTEM JIiHIHHHX
anreOpalyHUX pPiBHsAHb. BUKOPHCTAHHS TPOTPECHBHUX TEXHOJOTIH MpPOrpaMyBaHHS IMPH
peanmizamii 3a3HAYeHWX METOJMIB BHPIIICHHS CHUCTEM JiHIHHUX anreOpaidHUX piBHIHDb
JO3BOJIMJIO 3OUTBIIMTH IIBHAKICTH oOumcieHns B 1,9-2,9 pasu. Otpumani pe3yiapTaTé
KOPECTIOHAYIOTECST 3 BIJIOMUMH JIiITepaTypHUMH JaHWMH. HaykoBa HOBH3HA pPOOOTH
MIOJISITA€ B MOJANBIIOMY PO3BHTKY MPOTPECHBHUX MiAXOMIB A0 MiABUIICHHS €(EKTUBHOCTI
KOMI'IOTEPHOTO MOJETIOBaHHSA, IO BHKOPHUCTOBYE pO3MapalieieHi OO0YHCIIOBABHI
ITOPUTMHU METOJy NPOTOHKH LIISAXOM iX peaiizauii Ha cCy4acHUX KoM 'toTepax. B pobori
BIIEpIlIe OTPUMaHi 3HAUYEHHS Yacy MpOrpaMHoOi peaiizaiii MOCIiJOBHHUX 1 pO3MapajeeHoro
Ha JBa moToku 3acobamu Open Multi-Processing o0uncmoBaIbHUX ANTOPUTMIB METOIY
NIPOTOHKHU JUIs CHCTEM JIHIHHMX aireOpailuHMX pIiBHSHb 3Ha4YyHOro mopsuaky. Ilokasana
JOLIIBHICTh TaKOTO pO3MapajiefoBaHHs MUl CHCTeM JIIHIMHUX anreOpaidyHuX piBHIHB
nopsiaky Oimpme 2,5x105. IpakTiyHa 3HAYMMICTH POOOTH TONATaE B BHKOPUCTAHHI
OTPUMAHUX Pe3yJbTATIB MPH YNUCETFHOMY ITOCTI/KEHHI CTAIllOHAPHUX i HECTalliOHAPHHUX,
JMHIKHAX 1 HENHIMHMX TpoIeciB B 3aJadaX MaTeMaTHYHOTO MOJCIIOBAHHS, [Ie
OaraTopa3zoBe pIlICHHs CUCTEM JiHIMHMX anreOpaidHuX pPiBHAHb 3HAYHOTO MOPSIAKY €
HafiOUIBII ~ PEeCYpCHOMICTKMX eTamoM. [lepCreKTMBH MOAAJBIINX JOCIIIKEHB
MIPOTJISIIAIOTHECS B KOHTEKCTI O1IBII TITMOOKOTO PO3MapaieliOBaHHS AITOPUTMY 3a PaxXyHOK
BHKOPHUCTAHHS Oi1bII MacIITaboBaHOi MOAU(DIKaIlii METOY TPOTOHKH.

Katouosi cioBa: oOuncimoBaibHui anroputM, yucensHe pimenHs CJIAP, Open Multi-
Processing MeTom TPOTOHKH, INBUAKOMIIO, mapaienbHi oOumcnenHs, OpenMP,
MIPUCKOPEHHSI 00YNCIICHb.

277

mailto:olalzh@ukr.net

