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The operation of modern information protection systems is largely based on
asymmetric cryptographic algorithms that allow encrypted information to be
transmitted over an open communication channel without the need for prior key
exchange. Modern asymmetric cryptographic algorithms are based on the use of such
one-sided functions as factorization of large prime numbers and discrete logarithms,
which require significant computational costs for their use, and are not resistant to
promising quantum cryptanalysis attacks. Existing modifications of these
cryptographic algorithms based on elliptic curves are also characterized by some
significant drawbacks: many robust elliptic curves are currently patented, and
algorithms on elliptic curves often require the use of powerful physical generators of
truly random numbers. The solution to these problems is the use of the McEliece
cryptographic system, which is based on the problem of decoding complete linear
codes. Despite the prevailing performance of this system and its resistance to
promising quantum cryptanalysis attacks, such a shortcoming as the large length of
its public key has led to the fact that it is not often used in practice. In this paper, new
families of Hamming (n,k)-codes in extensions of extended Galois fields are proposed
and it is shown that on the basis of these codes a McEliece cryptosystem can be built,
which is characterized by a much smaller size of the public key while providing a
comparable number of generator matrices of the code so providing the comparable
value of the protection levels number. The possibility of applying cascade Hamming
codes on the extensions of extended Galois fields is shown, which makes it possible
to obtain protection against the Sidelnikov attack. The proposed cryptosystem can be
recommended for practical use in applications that require high speed (for example,
mobile devices, IoT devices, and embedded systems), as well as significant
cryptographic strength, including protection against promising quantum attacks.
Keywords: asymmetric cryptography, McEliece cryptographic system, Hamming
codes, quaternary logic.

Introduction and statement of the problem

Asymmetric cryptographic algorithms are a crucial element of modern
information protection systems, that largely determines their effectiveness and
performance [1]. Today the use of asymmetric cryptography makes it possible to solve
such basic tasks of information protection systems as key distribution, user
authentication, confirmation of message authorship, protection of the software, etc.

Among the most widespread in practice [2] asymmetric cryptographic algorithms,
it is necessary to note the Diffie-Hellman key distribution system, as well as RSA and El-
Gamal full-fledged asymmetric cryptographic algorithms, which are based on the task of
the complexity of factorization of large numbers and calculation of discrete logarithms.
Despite the breakthrough nature of these cryptographic algorithms and their indisputably
high importance in the tasks of ensuring the security of modern information technologies,
they are characterized by some significant drawbacks, including high computational
complexity of encryption/decryption algorithms, strict requirements for key information,
vulnerability to promising quantum cryptanalysis attacks [3]. The computational
complexity of these asymmetric cryptographic algorithms significantly limits their use on
modern resource-constrained platforms: mobile devices, [oT (Internet of Things) devices,
UAYV (Unmanned Aerial Vehicles), and also leads to the fact that everywhere in practical
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information transmission systems, asymmetric cryptographic algorithms are used once to
exchange a key information, after which encryption of the main data arrays is performed
using faster symmetric cryptographic algorithms.

The existence of effective quantum algorithms [4] for the factorization of big
numbers and calculation of discrete logarithms, as well as the significant pace of
development of quantum computers, is a quite real threat to the security of asymmetric
cryptographic algorithms based on these computationally complex problems, which led
to the appearance of modifications of the Diffie-Hellman, RSA, and EIl-Gamal
cryptographic algorithms based on the elliptic curves [5]. Nevertheless, even these
modifications are characterized by some significant drawbacks: the computational
complexity remains high, not all elliptic curves provide a sufficient level of security,
many robust elliptic curves are currently patented, algorithms on elliptic curves often
require the use of powerful physical generators of truly random numbers, which leads to
the complication and increase in the cost of the devices on which they are used.

As leading modern research shows, one of the powerful solutions of post-quantum
cryptography, which is characterized by a significant reduction in computational
complexity (and, therefore, is potentially suitable for use on resource-constrained
devices), is crypto-code constructions [6], among which the McEliece cryptosystem is
the most widely used solution. This cryptosystem is characterized by a lower level of
computational complexity when compared to RSA and El-Gamal [7] cryptographic
algorithms and a much higher level of resistance to quantum cryptanalysis attacks.
Nevertheless, despite its advantages, the classical McEliece cryptographic system is
characterized by a large amount of key information, which is necessary to achieve a
sufficient level of cryptographic strength, which significantly limits its use in practice.

The purpose of this paper is to reduce the size of the public key in the McEliece
cryptographic system while preserving its cryptographic strength using quaternary
Hamming codes.

Quaternary Hamming codes based on the extensions of extended Galois fields

Hamming error-correcting codes are linear codes for the binary alphabet with code
distance d =3, which allow detecting double and correcting single errors [8]. Today,
Hamming codes are quite well-researched and widely used in practice. However, despite
the significant scientific results obtained in the theory of error-correcting coding for
classes of binary linear codes, a large number of issues related to the application of non-
binary codes remain unsolved. The conceptual idea of quaternary Hamming codes was
introduced in [9].

The performed research shows that Hamming codes can be constructed not only

for the extended Galois field GF(2°), but also for the extensions of the extended Galois

fields GF(q"), g =2",u=2,3,... which were introduced in [10, 11]. This fact allows us
to talk about the existence of new families of Hamming codes in the extensions of
extended Galois fields. For example, let the Galois field GF(q"), where 7 is the number

of parity symbols in the Hamming code being constructed. Then the parameters of the
code will be determined by the following ratios: the total number of codeword symbols

g -1 , the number of data symbols k = g -
q-1 q-1
the code f =2, the number of errors corrected by the code ¢ =1.

n= —r, the number of errors detected by

In this paper, we consider an extended Galois field GF(2%), the arithmetic of
which can be constructed according to the only existing primitive irreducible polynomial
f(x)=x"+x+1 of degree deg(f(x))=2. We provide the tables of addition and
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multiplication in the Galois field GF(2°) = GF(4), the arithmetic of which is determined
by the previously mentioned polynomial.

+[0[1[2]3 - 10171273
010]1]2]3 0/0/0]0]0
1{1]0]3]2],[1[0]1]2]3 (1)
2121301 21012311
31312170 310[3]17[2

Considering relation (1), we can talk about the existence of new families of
Hamming codes based on the extension of extended Galois field GF(4") the first of
which has the following parameters: (5, 3), (21, 18), (85, 81) for » =2,3,4. These codes

can be specified using a parity-check matrix H, which is determined by the following
relation

H=[H,,|1,], (2)
where 7, , is the matrix of order » whose columns have unit Hamming weight; H,, is
the matrix of size rxk that contains columns which are orthogonal in the Galois field
GF(4") to each other, as well as to the columns of the matrix [, ,. Therefore, by

construction, all columns of the matrix H are mutually orthogonal.
On the basis of the parity-check matrix, the generator matrix can be constructed

by concatenating the matrix /, , of order k& whose columns have unit Hamming weight

and transposed matrix H, ,
G= [Ik,k |_H1~T,k ) ®)
where T is the transposition symbol.

Consider the example of constructing a Hamming (5,3)-code based on the
extension of the extended Galois field GF(4%). The Galois field GF(4*) contains 15
nonzero elements, each of which we can represent as a quaternary vector. At the same
time, the specified elements form (g —1)/ 3 classes, which contain linearly dependent
vectors, in other words, those that can be obtained from each other by multiplying by a
constant a € {1,2,3} in the Galois field GF(4%), i.e., according to the multiplication table
(1). For our example, there are (4° —l)/ 3 =35 classes of linearly independent quaternary

vector elements of the Galois field GF(4*) which are represented by different colors
V' ={01,02,03,10,11,12,88 20,21,22,23,30,31,82,33}. 4)

Choosing one vector from each class, we can construct the parity-check matrix H
in accordance with (2)

ft1 110
H‘[l 230 1}’ )

which completely defines the parity-check equations
X, +X, + X+ X, =5 ©)
X, +2x, +3x,+ X, =,.

where arithmetic operations are performed according to tables (1).

Let us also point out that the columns of the H matrix can be arranged in an
arbitrary order, just as any vectors from the equivalent classes (4) can be chosen. In
performing these operations, the correcting ability of the code does not change.

Note that decoding of information, as in the case of Hamming binary codes, can
be performed on the basis of the syndrome method [8]. The specific value of the syndrome
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S=HC" =[s, s,]" coincides with the column of the matrix H , which corresponds to

the symbol where the error occurred, which is multiplied by the amplitude of the error.
Thus, it becomes possible to correct the error that occurred after calculating the syndrome.
On the basis of the parity-check matrix, a generator matrix can be constructed in

accordance with (3)
1 0 011
G=|0 1 0 1 2|, (7)

0 0113
which defines the encoding equations for the parity-check symbols
X, =X +X,+x3;
{xs =X, +2x, +3x;,. (8)
Consider an example of the operation of the proposed Hamming correction code.
Let an information message A=[0 1 2] be given, which we will encode with the

proposed Hamming code. Let's suppose that an error with a value of amplitude equal to
2 occurred in the second element of the codeword (which corresponds to the second

information element), i.e., the error vector is equal to e=[0 2 0 O 0], while the

received codeword will have the form C'=[0 3 2 3 3].
On the receiving side, we calculate the value of the syndrome, which will be equal
to S=[2 3]". Since the obtained syndrome corresponds to the second column of the

matrix multiplied by a constant a =2, we conclude that the error occurred in the second
element of the codeword, while the amplitude of the change was equal to 2. This allows
us to reproduce the correct codeword C'.
The algorithm for generation of parity-check matrices for quaternary Hamming
codes

Note that in the case of using extensions of extended Galois fields, in particular,
for the construction of Hamming quaternary codes, there is an urgent need to select
linearly independent vectors in the complete quaternary vector code, i.e. to classify it into
classes, each of which contains 3 linearly independent vectors. Solving this problem for
large values of 7 can be quite computationally complex, as it involves sorting through a
set of ¢" —1 elements.

To solve this problem, the proposed algorithm for generating the code of all
possible vectors that does not contain their linear combinations can be applied:

Step 1. For the value r =1, this code contains only one codeword {1} .

Step 2. For a given value of r, the code of linearly independent vectors is
constructed as follows based on the code of linearly independent vectors of length » —1.

Step 2.1. Concatenate the symbol "0" to each codeword of the code of linearly
independent vectors of length » —1 as the most significant element of the codeword.
Step 2.2. The rest of the codewords of the code of linearly independent vectors

are constructed by concatenating the symbol "1" as the most significant element of the
codeword to the complete code of quaternary vectors of length »—1.

For example, with the help of the proposed algorithm, we will construct a code of
linearly independent vectors for the value » =2

{0 1 {0 {1 1i; {1 24 {1 3§, )
on the basis of which the code of linearly independent vectors for the value » =3 can be
built
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{0 0 1I;; {01 0k {0 1 Ij; {0 1 2§ {0 1 3}
100 0 {10 13 {10 25 {10 3
O S (N N VR WY | I (10)
A2 0 {1 2 1D 412 2 412 3
{1 3 0); {1 3 1}; {1 3 2} {1 3 3},
and so on.
We note that to build the parity-check matrix of the Hamming code, as its columns
the linearly independent vectors of the code of linearly independent vectors can be taken
in an unchanged form, or in the form of their linear combinations obtained by multiplying

them by some constants a,,i=1,2, ...,4% -1.

McEliece cryptographic system based on quaternary Hamming codes

The proposed quaternary Hamming codes could be the basis for the McEliece
cryptographic system, while giving it specific advantages over existing variants of this
cryptographic system based on other codes. Let's consider the algorithms of the McEliece
cryptographic system based on quaternary Hamming codes in the mode of transmitting
information from party B (Bob) to party A (Alice), accompanying it with specific
examples.

The algorithm for generation of key information

Step 1. Alice chooses an (n,k)-linear code Y that corrects one error. Then the
generator matrix G of size kxn is calculated for the code Y.

Step 2. In order to complicate the task of recovering the original code, Alice
generates a random non-singular matrix S of size k xn over the alphabet {0,1} .

Step 3. Alice generates an arbitrary permutation matrix P of size nxn.

Step 4. Alice computes the matrix G' = SGP ofsize kxn , which is considered as
a public key. A private key is a set {S,G, P}.

As an example, let's choose the generator matrix (7) synthesized by us in Section
2, and also generate a random non-singular matrix S and a permutation matrix P

01000

00 1 00010

S=l0 1 0f; P=|0 0 0 0 I (11)

1 0 1 1 000 0
00100

We calculate the public key matrix

0
0 0 1|1 001 1(0
G'=SGP={0 1 0|0 1 01 2|0

0
ol [1 03 01
=1 0 21 0, (12)
1 0110 0 1 1 31 0
0

01 201

SoOooOoOoO—
—Oo OO O
SOoOOoO—O

for the storage or transmitting of which in the binary form we will need 2kn bits, since
the elements of this matrix are quaternary.

The algorithm for information encryption

We will describe the encryption algorithm in the form of specific steps.

Step 1. Bob represents his message m as sequences of quaternary characters x of
length £.

Step 2. Bob generates a random vector e of length » with Hamming weight ¢.

Step 3. Bob calculates the ciphertext as y = xG'+ ¢ and transmits it to Alice.

Suppose that after receiving the public key G’ from Alice, Bob formed a message

X= [1 2 1] and also chose an error vector [0 1 00 0]. Bob can then encrypt his

plaintext message
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10301
y=[1' 2 1)1 02 1 0[+[0 1 0 0 0]=[3 0 2 2 0]. (13)
01201

After encryption, the open message is transfered to Alice, who performs the
following steps to decrypt the message using her private key.
The algorithm for information decryption

Step 1. Alice calculates the inverse matrix P~ .
Step 2. Alice calculates = yP.
Step 3. Alice uses the Y code decoding algorithm to obtain from y the value of

=>

Step 4. Alice calculates x=x5"" .
For our example

(14)

S~ OO O
— O OO Oo
SOooOoOoO
SO~ OO

while =[0 2 0 3 2].
Applying the algorithm for quaternary decoding, we see that the syndrome is equal
to [1 1]: due to permutations, the error has moved to the 1st symbol

eP ' = [l 0 00 O] . Since the obtained syndrome corresponds to the 1-th column of
the matrix H, and not to its linear combination, we conclude that the amplitude of the

error was 1, i.e., the corrected codeword is ):/z[l 2 0 3 2], while fc:[l 2 0].

We find that x=[1 2 1], which corresponds to the original text.

Security of the system

In the case of using binary Hamming codes, as proposed in work [12] for the
organization of the McEliece cryptographic system, the number of possible generator
matrices G will be determined as n! possible permutations of its rows due to the
determined properties of the Hamming code. At the same time, the length of the open key
will be kn. On the other hand, in the case of applying the quaternary Hamming code, we
can choose each of the columns of the matrix in one of 3 ways from a set of its linear
combinations, i.e., we get (3n)! different matrices. At the same time, the length of the

open key will be 2kn .

For example, when using a binary Hamming (63,57)-code, the number of possible
generator matrices will be 1.9826-10" while 3591 bits are required to store the public
key, while a quaternary Hamming (21, 18)-code with the same number of generator
matrices will require only 756 bits of the public key, i.e., in 4.75 times less. At the same
time, due to the fact that the McEliece cryptographic system is based on Hamming codes
in extensions of extended Galois fields it is able to simultaneously process a larger amount
of input information, it potentially allows faster algorithmic implementations (compared
to binary Hamming codes).

We also note that in the general case, the solution for systems of linear equations
in extensions of the extended Galois fields is a more complicated task from a
computational point of view, while for larger values of u, the specific Galois field
isomorphism can be part of the secret key.

It is considered promising to use the McEliece cryptographic system based on the
cascade quaternary Hamming codes to ensure security against the Sidelnikov attack. So,
for example, 16 plaintext vectors encrypted by the McEliece cryptographic system based
on the Hamming (21,18)-code can be re-encrypted by the McEliece cryptographic system

285



[HOOPMATHUKA TA MATEMATHUYHI METO/JI1 B MOZJEJIFOBAHHI = 2022 = Tom 12, Ne 4

based on the Hamming (341,336)-code, which should ensure a high complexity of the
relationship between the elements of the input and output data.

We note that more detailed security aspects of the proposed modification of the
McEliece cryptographic system based on Hamming codes in the extensions of extended
Galois fields is considered as subject of futher research.

Conclusions
Let's note the main results of the research performed:
1. New families of Hamming (n,k)-codes in the extensions of extended Galois

fields GF(q"), where q =2",u=2,3,..., are proposed. The properties of these codes as

well as their ability to detect errors and correct errors have been established. The features

of the application of the syndrome decoding algorithm for the developed families of

Hamming codes are established.

2. An asymmetric McEliece cryptographic system based on Hamming codes in
the extensions of extended Galois fields is proposed. It is shown that the use of extensions
of extended Galois fields allows to provide a larger number of possible generator matrices
of the Hamming code (i.e., a larger number of protection levels) with a shorter length of
the public key. Thus, in the case of using a quaternary Hamming (21,18)-code instead of
a binary Hamming (63,57)-code, with an equal number of possible generator matrices,
the length of the public key will decrease by the factor of 4.75 times.

3. The proposed cryptographic system, based on the classical McEliece
cryptographic system, is resistant to potential attacks of quantum cryptanalysis, has
smaller values of the length of the public key, and therefore can be recommended for
practical use in applications that require efficient and secure asymmetric cryptographic
algorithms.
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KPUIITOCUCTEMA McELIECE HA OCHOBI HETBIPKOBUX KOJIB
TEMIHTA

H.A. IcakoB, A.B. CokoJjioB

Hanionanenuii yHiBepcutet «Oecbka NOTITEXHIKA
VYkpaina, Oneca, 65044, np-t [lleBuenka, 1, radiosquid@gmail.com

3acTocyBaHHS Cy4JacHMX CHCTEM 3aXUCTy iHQopMmalii y Belnukid Mipi 0a3yeTbcs Ha acCHMETPUYHUX
KpunTorpadigHux aJropuTMax, Mo JO3BOJSIOTH IepemaBaTH 3amudpoBaHy iHGOpMAIio BiTKPUTHM
KaHaJIOM 3B’s3Ky 0€3 HEOOXiTHOCTI MOTIepeTHHOT0 OOMiHY KITFOYaMH TI0 JOJATKOBOMY 3aKPUTOMY KaHAITY.
CyuacHi acuMeTpuuHi KpunTorpadiyHi aJropuTMH 3aCHOBaHI Ha BUKOPUCTaHHI TaKUX OJHOCTOPOHHIX
¢yHKIi gk (akTopH3alis BEIMKHX NMPOCTUX YHCEN Ta JUCKPETHE JorapuMyBaHHs, SIKI BUMararoTb
3HA4YHI OOYMCIIOBAJIbHI 3aTpaTd JUIs CBOTO 3aCTOCYBaHHS, € HECTIMKMMH JI0 araKk KBaHTOBOTO
KpunToaHamizy. IcHyrodi Mmoaudikamii IMX KPUNTOAITOPUTMIB HA OCHOBI EJINTUYHMX KPUBHX TaKOX HE
1mo30aBJICHI CYTTEBUX HENOJIKIB: 0arato «BHaiKMX» CIINTUYHUX KPHBHX HA CHOTOJHI 3allaTCHTOBAHI,
ITOPUTMH HA EIINTHYHUX KPUBHUX YaCTO MOTPEOYIOTh 3aCTOCYBaHHS MOTYXKHHUX (DI3MUHUX TeHEPaTOpiB
ICTUHHO BUIMAJKOBUX 4YHCeNl. BUpIlIEHHSM 3a3HaYeHUX MPOOJIEM € 3aCTOCYBaHHS KPUITOCHCTEMH
MakEmnica, sika 0a3yeTbcs Ha mpoOieMi IeKOAyBaHHS TOBHHMX JiHIHHUX KomiB. He3Bakarounm Ha
NepeBakarody MBUIKOMIIO TaHOT CHCTEMH Ta il CTIMKICTh 0 aTak KBAaHTOBOT'O KPUIITOAHANI3y, TaKWi il
HEOJIK, SIK BEJIUKi TOBXHWHH ii BITKPUTOTO KITI04a, MIPU3BIB IO TOTO, III0 BOHA HEYACTO 3aCTOCOBYETHLCS HA
mpakTuIi. Y naHiii poOOTi 3ampomoHOBaHO HOBi ciMelcTBa (n,k)-komiB ['emiHTa Haj PO3MIMPEHHIMH
PO3MHpPEHNX TIOJIB Ta MOKa3aHO, IO Ha OCHOBI JaHHWX KOJIB MOXe OyTH MoOyaoBaHa KPUITOCHCTEMA
MakEmnica, o XapakTepu3yeThCsl 3HAYHO MEHIIMM PO3MIPOM BIIIKPUTOTO KIIOYA MPU CYMIpHOMY piBHI
KIJIBKOCTI FeHepaTOPHUX MaTpulpb Koay. [lokazaHa MOXKIMBICTh 3aCTOCYBAaHHS KackaJHHUX KoxiB ['emiHra
HaJl PO3LIMPEHHSIMH DPO3IIMPEHUX IMOJIB, II0 JO3BOJISIE OTpUMATH 3axucT Bix ataku CinenbHUKOBA.
3anpornoHoBaHa KPUOTOCHCTEMa MoOXe OyTH pPEKOMEHJOBaHa JO IPAaKTUYHOIO BHUKOPHCTaHHS Yy
3aCTOCYHKaX, 110 NOTPeOyI0Th BEIMKOI MIBUAKOAIT (HANpHKIaL, MOOUIBHUX NPUCTPOsiX, npuctposix [oT,
BOY/ZIOBYBaHHX CHCTEMax), a TaKOX 3HA4YHOI KPHIITOCTIHKOCTI, y TOMY WYHCIi, 3aXWIIEHOCTI BiA
MEePCIEKTUBHUX KBAHTOBUX aTaK.

KurouoBi ciaoBa: acumerpudna kpurrorpadis, kpunrorpadiuna cucrema MakEmica, komu I'eminra,
YEeTBIPKOBA JIOTIiKA.
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