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This article considers a problem of chromosomal pathologies detection. Chromosomal 

pathologies are dangerous and pose a great threat for family planning. To address 

them, the karyotyping process is conducted. Currently this process is manual or semi-

manual, despite high effort and error cost. So, there is a need for automation of the 

process. This process (and automation algorithm) can be separated into different 

stages with various objectives. However, the shared element among these stages is 

format that allows to store and manage data efficiently. The goal of this paper is to 

propose such format. The paper revises peculiarities of karyotyping process and 

briefly describes steps of the pathology detection algorithm. It also considers common 

formats for bioinformatics data. However, their efficiency is debatable, since data 

stored in these formats is redundant for the task at hand. After that, a new custom data 

format is proposed. This format represents main entities involved in the process of 

anomaly recognition. Several fragments of algorithm are considered, and their 

complexity is estimated combined with proposed data format. As a result, this paper 

proposes a new data storage format used in a chromosome abnormalities recognition 

algorithm, and metrics that can be used to make measurable improvement over the 

proposed format. 
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Introduction 

Congenital diseases have a significant impact on survivability rate of newborn 

children, including early deaths, miscarriages and stillbirth [1, 2]. Apart from this, further 

quality of life of surviving children may also be affected. A major subcategory of 

congenital diseases are chromosomal diseases [1]. 

These risks and issues are addressed by reproductive medicine. It introduces a wide 

variety of methods that handle various problems related to family planning and 

reproductive health. To solve the tasks of reproductive medicine, techniques of other 

branches of biology is used – for instance, cytogenetics. One of the main techniques for 

diagnosing chromosomal diseases is karyotyping [3]. 

Karyotyping is a process that implies an analysis of biological materials of 

parents/fetus, getting a visual depiction of their chromosomes and comparing 

chromosomes to ideograms – schematic depiction of “ideal” chromosomes [4]. Ideal 

chromosomes, called ideograms (fig. 1.A), are actually just a reference schematic 

representation used “by eye” to identify real chromosomes (fig. 1.B). 

 
Fig. 1.A. Ideogram of human chromosome 7  
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Fig. 1.B. Pair of human chromosomes 7  

 

While being time consuming and prone to human error, karyotyping is conducted 

manually, with limited means of automation. There are some solutions that present partial 

automations (like Lucia Karyo [5]), but they mostly provide useful utilities than true 

means of automation. 

Proposing a system that offers automation of chromosomal recognition is a large 

undertaking that can be divided into multiple separate units of research in various fields: 

Computer Vision, algorithms, decision making systems [6]. Full automation of 

chromosomal recognition includes: 

 Extracting data from visual depiction of live chromosomes; 

 Extracting data from ideograms; 

 Compare “parsed” chromosomes and ideograms with respect to certain rules; 

 Make a decision – a basis for medical diagnosis; 

In order to perform all these actions efficiently, it is crucial to store and manipulate 

data in an efficient manner. Therefore, it is necessary to design a data format that will 

complement the algorithm. 

Related Papers 

The general problem of programmatic chromosome pathologies recognition is not 

entirely new – there are even ready commercial solutions for reproductive laboratories to 

use. However, the common issue is that they do not create a comprehensive pipeline that 

would be able to get input image and produce a diagnosis. The aforementioned Lucia 

Karyo [5] can serve as an example – while it is helpful and effective for improving 

efficiency of karyotyping, it mostly consists of a database and specific image editing 

features. Moreover, no open data formats designed specifically for chromosomes have 

been found. 

The global task under consideration is related to the field of bioinformatics, and there 

are several well-known formats for storing biological data. The prominent examples are 

Variant Call Format [7] and Stockholm Format [8], but there is also a considerable variety 

of accepted ways to store bioinformatic data [9]. 

Variant Call Format is a format that stores information about positions in the genome. 

One of its main features is brevity – it only stores differences from the norm. VCF focuses 

on the unit of measurement that is not applicable to the problem considered by this article, 

but the idea of storing only differences might potentially grant a boost to storage format 

and algorithm efficiency. It should also be noted that VCF operates a flat array of data, 

while chromosome pathology might need some data nesting to represent itself in full. 

Stockholm format, like VCF, operates genome sequence alignment. However, it has 

vastly different syntax and shares richer metadata features. Nonetheless, using Stockholm 

format for the purpose of this article seems as redundant as using VCF. 

However, these formats are mostly centered around genetic information, which is 

redundantly precise for the task at hand. Therefore, there might be a need to develop 

custom format centered around chromosomes instead of genes. 
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Goal 

The goal of the paper is to propose a data storage format designed for efficient storage 

of chromosomal data, that would be fit to handle both recognized “live” chromosomal 

data and ideogram data. 

Such a format would be useful for algorithms focused on chromosome management. 

Main Body 

In order to formulate a proposal of a data format, it is necessary to revise the process 

of karyotyping domain and the general algorithm of its automation. 

The goal of karyotyping process is to gather information about chromosomes of a 

person and compare them to the “reference” versions, known to be normal and healthy. 

By comparing actual and reference chromosome, mismatches can be found and diagnosis 

can be made. The process can be roughly separated into three stages. 

The first stage of karyotyping process includes gathering of the material and 

preprocessing. This process is out of scope of the research since it it heavily relies on 

specific medical hardwar. This stage results in a metaphase plate – a random arrangement 

of chromosomes depicted on fig. 2. 

Metaphase plate includes all the chromosomes of a person, plus possible noise and 

obstacles. 

 

 
Fig. 2. Metaphase plate 

 

The second stage implies recognition of metaphase plate contents. Metaphase plate 

contains all the chromosomal data of a person, but it is not arranged and insufficient to 

state a diagnosis. In this stage, a medical specialist has to manually inspect a metaphase 

plate image, remove noises, obstacles and categorize each chromosome. 

A healthy karyotype consists of 22 “numbered” pairs and XX/XY pair for 

female/male patients respectively. Therefore, there are 24 types of chromosomes – 22 
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“numbered” ones, X and Y. Each of these 24 “types” has a distinctive visual pattern, 

consisting of specific combination of black and white stripes (bands) of specific lengths. 

So, in order to categorize a chromosome, specialist has to compare it to a schematic 

representation of an ideal chromosome called “ideogram” (fig. 1.A) 

Categorized chromosomes are arranged in pairs, forming a karyogram – an 

intermediate result of a karyotype (fig. 3).  

 
Fig.3. Karyogram with trisomy 18 

 

Karyogram is a reference image for more convenient visual analysis, allowing to 

detect anomalies. There are several major groups of anomalies to detect: 

 Quantitative anomalies. Chromosomes commonly go in groups of two, but 

sometimes there are three (trisomy) or more chromosomes of the same type. Notorious 

examples are Down syndrome (trisomy 21) [10], Edwards syndrome (trisomy 18) [11], 

but there are more syndromes caused by redundant number of chromosomes. Detecting a 

bigger-than-expected number of healthy chromosomes is a sign of quantitative anomaly; 

 Structural anomalies. A malformed chromosome is something that is called a 

structural anomaly. Common examples of structural anomalies are duplication (same part 

of a chromosome repeating twice), deletion (part of a chromosome is missing) and 

translocation (part of a chromosome is moved) [12]. Detecting a partial match of a 

chromosome may help detecting a structural anomaly, but many checks are required to 

confirm the exact nature of such anomaly; 

The third stare results in the actual diagnosis. Medical specialist analyses a 

combination of detected anomalies and states the final result. 

Having overviewed the process of karyotyping, it is possible to revise a general 

algorithm for its partial automation. The algorithm can be broken into separate atomic 

parts which could be addressed separately. Each part addresses specific problem, can be 

improved independently or mocked. When combined, these parts form a pipeline that 

takes chromosome image as input and a suggested diagnosis as an output. 

This paper is focused on a data format used in such an algorithm, but brief 

algorithm overview is necessary for the context. 

The first stage remains unautomated, since it depends on advanced medical 

hardware. The metaphase plate (fig. 2) is considered to be the input data for the algorithm. 

The second stage starts from an image and its goal is to recognize its content. As 

an input image, anything depicting a set of chromosomes can be used, such as metaphase 

plates and karyograms. In realistic scenarios, metaphase plates would be used, but user 

could also upload a karyogram to validate manually conducted karyotyping. 
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In any case, this stage starts from noise removal from the image (which is basically 

anything that does not have features of a chromosome). After that, a contour detection is 

conducted, identifying tangible objects inside an image. The detected contours are filtered 

again, removing objects that do not resemble chromosomes by a set of criteria. This way, 

algorithm would be able to continue working with a definitive set of visual objects. 

The next step of this stage is extracting features from each specific visual object. 

This step is iterative and considers one object at a time, attempting to detect information 

that could later be used to determine 

During this step, the algorithm loops through the set of objects and extracts 

features from each of them, moving data into a custom format considered by this article. 

Having extracted image data into this format, it is possible to compare parsed 

chromosomes to ideograms (also described into same custom format). 

This comparison, as well as identifying chromosomal diseases, constitute the third 

step. This would require a separate decision-making mechanism [13], that would also 

account for variable chromosome sizes and would detect chromosome being a mutated 

version of a certain ideogram. And, having a set of detected chromosomes and their 

abnormalities, it is possible to determine a suggested diagnosis. In order to map 

abnormalities to a distinct diagnosis, a knowledge base is required. So, it would be logical 

to keep a “dictionary” with possible chromosome states and corresponsive diagnoses. It 

should be noted, that not each chromosome abnormality has a distinctive name assigned 

to it – but it can be surely stated that if there is any mismatch with healthy karyotype, an 

anomaly takes place. 

Since algorithm is focused on chromosome storage and comparison, designing 

efficient data format is essential for its effectiveness. This format should be able to 

represent a set of chromosomes, where each chromosome consists of bands with specific 

color and size. Fig. 4 shows a class diagram with suggested data format. 

 
Fig. 4. Class diagram depicting proposed data storage 

 

The Chromosome is the main object of the storage. It stores information of a single 

chromosome. The number property stores a suggested number of chromosome – a value 

from range 1…24, X or Y. is_ideogram flag shows what data is actually stored in this 

instance – a real chromosome or ideogram. This way all the data used in algorithm is kept 

in a uniform format. 

 Each chromosome has nested list of Bands – a colored segments of chromosome. 

Each segment has color and length. Bands could be a result of feature detection from 

image, or just a serialization of ideogram for more straightforward comparison. Since 

chromosomes could be of a variable size, it is proposed to store the relative length. This 
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way it would be possible to compare chromosomes by their internal features despite size 

differences. 

There is a hypothetical issue comes from a fuzzy nature of data – it is improbable 

that there would be exact match between ideal band and a patient band. To address this 

issue, error_threshold field is added to a band. It stores maximum allowed deviation 

between ideal bend and chromosome bend. 

The aforementioned objects are created as a part of chromosome feature extraction. 

After that, parsed chromosomes are compared against ideograms, bend by bend, to find a 

perfect match. On this stage, quantitative anomalies could be detected – this happens 

when there is an improper number of valid chromosomes. All the cromosomes that do not 

have a perfect match along with ideograms, are compared to ideograms bend by bend to 

find the closest match. When found, a structural abnormality is registered – this means 

that a part of chromosome is missing or duplicated. 

Anomalies are stored into the Abnormality entity. This entity has a type and 

references to chromosomes and bends. In case of quantitative anomaly, reference to a 

chromosome is sufficient. In case of structural anomaly, affected bands are referenced. 

In a stage of diagnosis making, a list of abnormalities is traversed and compared to a 

list of known medical conditions. If there is a match – a diagnosis is proposed. If there 

are no matches, but there are still abnormalities – it means the patient has an unidentified 

pathology, which is not uncommon. If there is no supposed diagnosis and there are no 

abnormalities – the patient’s chromosomes are considered healthy. 

Having described the nature of data format, it is necessary to evaluate its efficiency 

of executing core algorithm operations on proposed data format. Suppose there is a set of 

N chromosomes and a set of M ideograms. Each chromosome n consists of Bn bands, and 

ideogram m consists of Bm bands. In this case: 

 

Table 1  

Operations complexity 

 Operation Complexity 

1. Identification of a single chromosome. A chromosome is 

iteratively compared to each ideogram m. 

O(M) 

2. Identification of quantitative abnormality. Each chromosome 

n is compared to each ideogram m. After that, each detected 

chromosome is looped to find unwanted duplicates. 

O(N*M+N) 

3. Identification of a deletion. Each chromosome n is compared 

to each ideogram m. If a match is detected and it is partial, it 

is supposedly a deletion. 

O(N*M) 

 

The provided tests are fairly simple, but they should be sufficient to demonstrate 

the nature of data, serve as a reference for further research and efficiency measurement. 

Moreover, lack of open formats designed to store chromosomes, it is important to 

establish a baseline for improvements and comparison. 

Results and Discussion 

Unfortunately, not much could be reused from the research of existing storage 

formats of biological data. Formats like VCF or Stockholm formats are too detailed and 

store too much information about chromosomes to be efficient for the task at hand. 

Due to the lack of research dedicated to designing data storage of chromosomes, it is 

hard to state that the proposed storage format offers outstanding efficiency. However, it 

represents application data domain in a straightforward and non-redundant way, 

introducing code entities matching domain objects. This would allow to reliably represent 

complexity of operations that are performed during cytogenetic analysis, and would allow 

to introduce measurable algorithms for its automation. 
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Conclusions 

Automation of chromosomal diseases recognition is a relevant problem. Currently it 

is done in a manual or semi-manual way – and due to its high effort consumption and 

high cost of error it requires automation. This paper proposes a data format used for 

storing data for automation algorithm. 

The essence of the problem has been revised, describing the nature of karyotyping 

process as well as general automation algorithm. Existing data formats used in domain of 

biocybernetics are revised, and none of them proved to be efficient for the task at hand. 

After considering the requirements that should be addressed, a new custom data 

format has been suggested. This format stores both chromosomes and ideograms as a 

collection of bands, allowing easier comparison because of similar nature of data. It also 

stores detected abnormalities in separate objects, mostly for caching reasons. 

A simple set of operations has been described and its potential complexity has been 

evaluated. This would allow to make measurable improvements in further research, 

establishing a metrics baseline. 
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Публікація розглядає задачу автоматизованого розпізнання хромосомних патологій. Хромосомні 

патології представляють значну небезпеку при плануванні вагітності. Для протидії цій проблемі 

задіюється процес каріотипування. На даний момент такий процес проводиться вручну чи в 

напівавтоматичному режимі, не дивлячись на великі часові затрати та високу ціну помилки. Отже, 

існує потреба в автоматизації даного процесу. Процес каріотипування (як і алгоритм його 

автоматизації) можна поділити на кілька етапів з різними цілями. Але у цих етапів є спільний 

елемент – формат, в якому зберігаються та обробляються дані. Метою даної статті є пошук такого 

формату. В статі оглянуто особливості процесу каріотипування та коротко описані кроки алгоритму 

з розпізнавання хромосомних патологій. Також розглянуто поширені в сфері біоінформатики 

формати даних. Нажаль, їхня ефективність у застосуванні до представленої задачі є сумнівною. 

Публікація пропонує новий формат даних для вирішення проблеми. В форматі представлені основні 

сутності задіяні в процесі розпізнавання аномалій. Розглянуто кілька фрагментів алгоритму, і 

розглянута їхня ефективність в комбінації з форматом даних. Результатом даної статі є 

запропонований формат для зберігання та обробки даних, що може бути використаний в процесі 

автоматичного розпізнавання хромосомних аномалій. Отримані заміри можна використовувати для 

подальшого покращення результативності алгоритму та ефективності формату зберігання даних. 

Ключові слова: складність алгоритму, аналіз даних, domain-driven design 


