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The methods for polynomial recovery from its residues in Z[x] ring are presented in this 

paper. This problem is relevant due to important applications in asymmetric and symmetric 

cryptography, algorithms of noise resistant coding, in the process of transmitting data packets 

for error control and recovery in computer networks and distributed data storage. The 

theoretical foundations of polynomial recovery in a ring of polynomials based on known 

approaches, namely, on the Chinese Remainder Theorem and Garner's algorithm, are 

considered, and their advantages and disadvantages are highlighted. New methods of inverse 

transform from the Residue Number System based on addition of the product of moduli and 

the product of polynomial residues are developed. Analytical expressions of the time 

complexity of the proposed method and Garner's algorithm are created. The graphs of their 

dependences are presented, which show that the developed method for polynomial recovery 

from its residues in Z[x] ring is characterized by lower complexity. It was found that the time 

complexities of both methods increase with an increase in the dimensions of the input 

parameters. The efficiency of the use of the developed method in the ring Z[x] is studied, 

which shows a logarithmic growth with an increase in the degrees of the polynomial, and a 

proportional decrease when a number of moduli increases. 

Key words: polynomial recovery, ring of polynomials, residues, Chinese Remainder 

Theorem, Garner's algorithm, time complexity, efficiency. 

 

Introduction. Polynomial recovery from its residues in a ring of polynomials is an important 

problem of modern algebra and number theory [1,2]. In practice, similar to the case of integers 

[3-5], the application of this theory, namely the Residue Number System (RNS) in a polynomial 

ring (PR), allows working not with higher degree polynomials, but with sets of residues whose 

degree is less than or equal to the selected moduli (irreducible polynomials) [6, 7]. One of the 

main advantages of using RNS PR is that calculations can be performed in parallel for each 

module [8]. These properties make it possible to reduce the complexity of calculations and, 

accordingly, to increase the efficiency of computer systems due to the parallel process of 

performing arithmetic operations [9], to control and correct errors in noise resistant coding [10, 

11], and etc. Polynomial Residue Number Systems (PRNS) are widely used in modern 

cryptography, in particular, in RSA [12, 13], Rabin [14], AES ciphers [15], and etc. In the RSA 

cryptosystem, residues on division by a high-order polynomial, which is the product of two 

irreducible polynomials, are calculated [13]. Accordingly, to increase performance, calculations 

can be carried out modulo irreducible polynomials of a significantly lower order. Therefore, the 

development of methods and algorithms that make it possible to reduce the time complexity 

when recovering a polynomial from its residues in a polynomial ring is currently a relevant 

problem. 

Related Works. The main ideas of the PRNS were outlined in [9, 16]. The most important 

contribution of these works is the fundamental theorem on the modular number system. Due to 

the theorem, the coefficients of the polynomials used to represent the set Zp, are restricted. In 

[17], the requirements for the size of the parameters used to represent an integer modulo p were 

defined. Work [18] is devoted to the development of multiplication algorithms in PRNS. In 

[19], a modified Chinese Remainder Theorem (CRT) for cyclotomic polynomials was 

presented, which made it possible to simplify the polynomial recovery from its residues. After 
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that, PRNS found its application in problems of noise resistant coding. In particular, in [20], the 

principles of generating redundant codes in the polynomial number system were considered, 

and the algorithm was developed, which made it possible to detect and correct errors without 

the inverse transform of the PRNS code into a positional one and without performing a division 

operation. It should be noted that the Chebyshev polynomials take an important role in data 

protection. For example, in [21], a scheme in the client-server environment was proposed on 

the basis of the Chebyshev polynomials. Although this scheme demonstrates a lower speed 

compared to the existing ones, it can resist some popular attacks. Recently, the Chebyshev 

polynomials have been actively used in asymmetric cryptography. Thus, in [22], two 

asymmetric cryptosystems were developed on the basis of the Chebyshev polynomials, the 

main feature of which is the generation of a semigroup with respect to the composition 

operation. An image encryption algorithm based on the Chebyshev polynomials was proposed 

in [23]. In [24], modified fast algorithms of asymmetric cryptography, i.e., matrix algorithm 

and algorithm based on the characteristic polynomial were developed and an efficient scheme 

for calculating the Chebyshev polynomials over a finite field was presented. 

Methods for polynomial recovery. The theoretical basis for polynomial recovery from its 

residues in the corresponding ring, as for integer arithmetic [25], is algebra and number theory, 

in particular the CRT in a polynomial form. Any polynomial 01
1
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Another method of a polynomial recovery from its residues in the corresponding ring is 

Garner’s algorithm, which is based on the relation:  
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where )()(0 1 xpxn ii  , i=0, 1, …, k-1,  
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In this case, the polynomials )(xni  are calculated sequentially one after another based on 

the recurrence formula (4). In addition, both Garner's algorithm and CRT can be used for similar 

operations in integer arithmetic. 

The main disadvantage of the above methods of a polynomial recovery from its residues 

is strictly sequential structure of polynomials, which makes it impossible to parallelize 

calculations, perform operations on polynomials of higher orders (in particular, calculate the 

residue modulo )(xP ), and it is necessary to find modular multiplicative inverse in the ring of 

polynomials, which is a cumbersome task even for integer arithmetic [26]. To find it, the 

following methods are most commonly used [27]: sorting through all possible options, using 

the extended Euclidean algorithm, based on the Euler function. These approaches are 

characterized by significant computational complexity. 

Therefore, the purpose of this work is to develop the methods for polynomial recovery 

from its residues in a ring of polynomials based on the product addition and the addition of 

moduli residues with the possibility of parallelizing calculations and avoiding the multiplicative 
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inverse polynomial search procedure. At the same time, the results of intermediate calculations 

will not go beyond the set range, which eliminates the need to perform the operation of finding 

residue relatively large modulo )(xP . 

Polynomial recovery method based on addition of the product of the polynomial moduli. 

Let us consider the system of congruences, which is built based on relation (1): 


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Any congruence modulo р1(x) with the residue b1(x) (e.g., )()(mod)( 11 xbxpxa  ) can be 

represented in the form of )()()()(
11

xbxpxxa   , where )(x  is a polynomial that indicates how 

many times modulo )(1 xp  must be added to the residue )()( 11 xNxb   to satisfy the relation 
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product )()( 21 xpxp  until the congruence )()(mod)(
333
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)()()()()( 21223 xpxpxxNxN  , is fulfilled. This procedure continues until the last equation (5) 

is satisfied. Analytically, it is written as follows: 
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Let us consider the following example. Let the given system of comparisons be: 
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Without reducing the generality of the problem, we can assume that for polynomials 

)(,),(),( 21 xpxpxp k  their degrees satisfy the inequalities kpppp degdegdegdeg 321   . 
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Next, it is necessary to add the product     234221)()( 23422
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Its solutions are the values of 
16
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 AAA . So, by substituting
012
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we get the recovered polynomial from its residues according to the proposed algorithm: 
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Therefore, the solution to system (7) is a polynomial, which is obtained without the use of 

cumbersome operations and control over the overflow of the bit grid when performing 

intermediate calculations. 

It should be noted that the proposed method is similar to Garner's algorithm, but the 

operation of finding the modular inverse in the ring of polynomials to obtain the corresponding 

coefficients is eliminated. 

The method for decimal number recovery based on addition of the residue from the 

product of moduli. To simplify the calculations used in the proposed method, it is possible to 

add not the product of polynomials- moduli, but the residue from this product division by the 

corresponding polynomial. The mathematical notation of this method is as follows: 
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 Let us consider an example of polynomial recovery from its residues adding the residue 

from the product of moduli based on system (7). Since     12mod1 22  xxxx , then from 

the first comparison (8) we obtain the congruence      522mod3 2
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 xxxxx  , in which it 
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2,1
01

 AA , respectively   2
1

 xx .  



ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ ▪ 2024 ▪ Том 14, № 4 

309 

 At the next stage, it is necessary to find the residue from the product 

            xxxxxxxxxxxxxxxpxpxp 2212mod234212mod21mod)()( 23234322
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2
 xxxxxx . As a result, a polynomial similar to the previous 

example is obtained. 

Therefore, the developed methods for polynomial recovery from its residues in Z[x] ring 

make it possible to avoid complex operations, in particular, division with residues and finding 

the inverse element, as well as to perform calculations on polynomials of lower order in 

comparison with the classical CRT and Garner's algorithm. 

Investigating the time complexity of the proposed methods. To calculate the time dependence 

of the developed methods, it is necessary to determine the most time-consuming basic arithmetic 

operations. The proposed algorithm includes multiplication, addition, and finding residues in a 

polynomial ring. In [28], it was proved that the multiplication problem    xqxp   requires

 nnO log4  bit operations (the logarithm is taken at base 2), where       xqxpn deg,degmax  is 

the largest degree of the polynomial. Taking into account the complexity of finding residues 

[29], the total estimate is  nnO log5  of bitwise operations. It should be noted that the developed 

algorithms require 
 

2

2 kk 
multiplication operations, where k  is the number of moduli, as well 

as finding the residue at each step. Therefore, the total complexity asymptotically approaches

  nnkkO log2
1  . 

In the classical Garner’s algorithm, it is necessary to find the multiplicative inverse k 

times in the ring of polynomials. In [21] it is stated that the time complexity of the mentioned 

operation in the standard basis GF(qn) over GF(q) field, taking into account the complexity of 

the Euclidean algorithm  nnO 2log  and its consequence  nnnO logloglog2
, is equal to

  1logloglog2 nnnO . In addition, classical Garner’s algorithm includes the same operations as 
the developed algorithms, that is, addition, multiplication, and finding residues. Due to this, its 

time complexity is      1loglogloglog 22

2
 nnknnnkkO .  

Therefore, the proposed algorithm for number recovery from its residues allows reducing 

the time complexity from      1loglogloglog 22

2
 nnknnnkkO  to   nnkkO log2

1  . Figure 1 

shows the graphs that indicate the dependences of the time complexities of the proposed and 

classical approaches to a polynomial recovery from its residues in the ring of polynomials when

10k  and n=1,…,1000. 
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Fig. 1. Graphs of the time complexity dependences of the proposed method O1(n) and Garner’s 
algorithm O2(n) 
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It can be seen in Figure 1 that the use of the developed method of a polynomial recovery 

from its residues in the corresponding ring, which is based on the addition of the product of 

moduli-polynomials, allows us to reduce the time complexity. The results of the numerical 

experiment show an increase in both time complexities with an increase in dimensions of the 

input parameters. 

The efficiency of the developed methods is determined by the ratio of the time 

complexities and in the general case is noted as follows: 
 
 
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Figure 2 shows a graph representing dependence of the proposed method efficiency  in 

comparison with Garner's algorithm. Input parameters are selected within the following ranges: 

201  k , а 10001  n . 

 
Fig. 2. Dependence of the proposed method efficiency in comparison with Garner's algorithm 

according to the number of moduli k and polynomial degrees n 

 

It should be noted that the efficiency of the proposed method increases logarithmically 

with an increase in the degree of the polynomial, and decreases proportionally with an increase 

in the number of moduli. 

Conclusions. Methods for the polynomial recovery in Z[x] ring are proposed, which make it 

possible to parallelize calculations and avoid the procedure of finding the polynomial 

multiplicative inverse due to the operations of adding the product of moduli and the product of 

residues from moduli that in turn leads to an increase in efficiency. As a result, the effect is 

achieved when the results of intermediate calculations go beyond the set range, which eliminates 

the need to find the residue from a polynomial of relatively high order. Analytical expressions 

of the time complexities of the proposed approach and Garner's algorithm due to the order of 

polynomials and the number of polynomials-moduli are obtained, which show that the use of the 

developed method makes it possible to reduce the time complexity. Graphs of the time 

complexity and efficiency dependences are presented. It is found that the efficiency of the 

proposed methods increases logarithmically with an increase in the degrees of polynomials, and 

decreases proportionally with an increase in the number of moduli. 
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МЕТОД ВІДНОВЛЕННЯ ПОЛІНОМІВ ЗА ЇХ ЗАЛИШКАМИ НА ОСНОВІ 
ОПЕРАЦІЇ ДОДАВАННЯ В КІЛЬЦІ Z[X]  
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Представлено методи відновлення поліномів за їх залишками в кільці Z[x]. Дана задача є актуальною для 
застосування в асиметричній та симетричній криптографії, алгоритмах завадозахищеного кодування, 
контролю та відновленню помилок в процесі передавання пакетів даних в комп’ютерних мережах та 
розподіленому зберіганню даних. Розглянуто теоретичні основи відновлення поліномів в кільці поліномів 
на основі відомих підходів, а саме, китайської теореми про залишки, алгоритму Гарнера, визначено їх 
переваги та недоліки. Розроблено нові методи зворотного перетворення з системи залишкових класів на 
основі операції додавання добутку модулів та добутку залишків поліномів. Побудовано аналітичні вирази 
часових складнощів запропонованого методу і алгоритму Гарнера. Представлено їх графічну залежність, 
яка вказує на те, що розроблений підхід відновлення полінома по його залишках у кільці Z[x] 

характеризується меншою складністю.  Встановлено, що при збільшені розмірності вхідних параметрів 
зростають часові складності обох методів. Досліджено ефективність використання розробленого методу у 
кільці Z[x], яка вказує на логарифмічне зростання при збільшенні степенів полінома, і пропорційне 
зменшення у випадку збільшені кількості модулів.   
Ключові слова: відновлення поліномів, кільце поліномів, залишки, Китайська теорема про алгоритм 
Гарнера, часова складність, ефективність. 
 

 


