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The methods for polynomial recovery from its residues in Z[x] ring are presented in this
paper. This problem is relevant due to important applications in asymmetric and symmetric
cryptography, algorithms of noise resistant coding, in the process of transmitting data packets
for error control and recovery in computer networks and distributed data storage. The
theoretical foundations of polynomial recovery in a ring of polynomials based on known
approaches, namely, on the Chinese Remainder Theorem and Garner's algorithm, are
considered, and their advantages and disadvantages are highlighted. New methods of inverse
transform from the Residue Number System based on addition of the product of moduli and
the product of polynomial residues are developed. Analytical expressions of the time
complexity of the proposed method and Garner's algorithm are created. The graphs of their
dependences are presented, which show that the developed method for polynomial recovery
from its residues in Z[x] ring is characterized by lower complexity. It was found that the time
complexities of both methods increase with an increase in the dimensions of the input
parameters. The efficiency of the use of the developed method in the ring Z[x] is studied,
which shows a logarithmic growth with an increase in the degrees of the polynomial, and a
proportional decrease when a number of moduli increases.

Key words: polynomial recovery, ring of polynomials, residues, Chinese Remainder
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Introduction. Polynomial recovery from its residues in a ring of polynomials is an important
problem of modern algebra and number theory [1,2]. In practice, similar to the case of integers
[3-5], the application of this theory, namely the Residue Number System (RNS) in a polynomial
ring (PR), allows working not with higher degree polynomials, but with sets of residues whose
degree is less than or equal to the selected moduli (irreducible polynomials) [6, 7]. One of the
main advantages of using RNS PR is that calculations can be performed in parallel for each
module [8]. These properties make it possible to reduce the complexity of calculations and,
accordingly, to increase the efficiency of computer systems due to the parallel process of
performing arithmetic operations [9], to control and correct errors in noise resistant coding [10,
11], and etc. Polynomial Residue Number Systems (PRNS) are widely used in modern
cryptography, in particular, in RSA [12, 13], Rabin [14], AES ciphers [15], and etc. In the RSA
cryptosystem, residues on division by a high-order polynomial, which is the product of two
irreducible polynomials, are calculated [13]. Accordingly, to increase performance, calculations
can be carried out modulo irreducible polynomials of a significantly lower order. Therefore, the
development of methods and algorithms that make it possible to reduce the time complexity
when recovering a polynomial from its residues in a polynomial ring is currently a relevant
problem.

Related Works. The main ideas of the PRNS were outlined in [9, 16]. The most important
contribution of these works is the fundamental theorem on the modular number system. Due to
the theorem, the coefficients of the polynomials used to represent the set Zp, are restricted. In
[17], the requirements for the size of the parameters used to represent an integer modulo p were
defined. Work [18] is devoted to the development of multiplication algorithms in PRNS. In
[19], a modified Chinese Remainder Theorem (CRT) for cyclotomic polynomials was
presented, which made it possible to simplify the polynomial recovery from its residues. After
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that, PRNS found its application in problems of noise resistant coding. In particular, in [20], the
principles of generating redundant codes in the polynomial number system were considered,
and the algorithm was developed, which made it possible to detect and correct errors without
the inverse transform of the PRNS code into a positional one and without performing a division
operation. It should be noted that the Chebyshev polynomials take an important role in data
protection. For example, in [21], a scheme in the client-server environment was proposed on
the basis of the Chebyshev polynomials. Although this scheme demonstrates a lower speed
compared to the existing ones, it can resist some popular attacks. Recently, the Chebyshev
polynomials have been actively used in asymmetric cryptography. Thus, in [22], two
asymmetric cryptosystems were developed on the basis of the Chebyshev polynomials, the
main feature of which is the generation of a semigroup with respect to the composition
operation. An image encryption algorithm based on the Chebyshev polynomials was proposed
in [23]. In [24], modified fast algorithms of asymmetric cryptography, i.e., matrix algorithm
and algorithm based on the characteristic polynomial were developed and an efficient scheme
for calculating the Chebyshev polynomials over a finite field was presented.

Methods for polynomial recovery. The theoretical basis for polynomial recovery from its
residues in the corresponding ring, as for integer arithmetic [25], is algebra and number theory,

n—1

in particular the CRT in a polynomial form. Any polynomial N(x)=a,x" +a,_ x"" +...+ax+aq,
can be represented in the form of residuesb;(x)=cx' +¢,_x" ' +...cx+¢, of division by
irreducible polynomials p;(x) = s,x* +s,_,x" ' +...+ s;x + 55, which are called polynomial moduli
b;(x) = N(x)modp;(x) , (1)
where degh, =degN —degp;.
At the same time, a necessary and sufficient condition is the inequality

N(x)<P(x)=ﬁ pi(x), where k is the number of irreducible polynomials. Then, the original

i=1

polynomial can be unambiguously recovered on the basis of the CRT:
k
N(x)= (Zmi (D)EF(x)b; (X)J mod P(x), )
i=1

where P(x)= P((x)) , m;(x)= P (x)mod p;(x) .
X

i

Another method of a polynomial recovery from its residues in the corresponding ring is
Garner’s algorithm, which is based on the relation:
N(x) = 10 () + 1 (%) Py (%) + 11, () py () P2 (X) + .4 1, () Py () 2 (X)...p, 1 (%), (3)
where 0<m(x)< p;(x), i=0,1, ..., k-1,
n(x) = by () = (1 () + 1 () Py (X) + .4 1 () Py () P (X)... Py (%) modp,,,(x) .(4)
P1(X) Py (x)...p;(x)
In this case, the polynomials #;(x) are calculated sequentially one after another based on

the recurrence formula (4). In addition, both Garner's algorithm and CRT can be used for similar
operations in integer arithmetic.

The main disadvantage of the above methods of a polynomial recovery from its residues
is strictly sequential structure of polynomials, which makes it impossible to parallelize
calculations, perform operations on polynomials of higher orders (in particular, calculate the
residue modulo P(x) ), and it is necessary to find modular multiplicative inverse in the ring of
polynomials, which is a cumbersome task even for integer arithmetic [26]. To find it, the
following methods are most commonly used [27]: sorting through all possible options, using
the extended Euclidean algorithm, based on the Euler function. These approaches are
characterized by significant computational complexity.

Therefore, the purpose of this work is to develop the methods for polynomial recovery
from its residues in a ring of polynomials based on the product addition and the addition of
moduli residues with the possibility of parallelizing calculations and avoiding the multiplicative
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inverse polynomial search procedure. At the same time, the results of intermediate calculations
will not go beyond the set range, which eliminates the need to perform the operation of finding
residue relatively large modulo P(x) .

Polynomial recovery method based on addition of the product of the polynomial moduli.
Let us consider the system of congruences, which is built based on relation (1):
b,(x) = N(x)mod p,(x)
b,(x) = N(x)mod p, (x)
)

b, (x) = N(x)mod p, (x).

Any congruence modulo p1(x) with the residue bi(x) (e.g., a(x)modp;(x) =5 (x)) can be
represented in the form of a(x) = y(x)p,(x)+5b,(x) , where y(x) is a polynomial that indicates how
many times modulo p,(x) must be added to the residue,(x) = N,(x) to satisfy the relation
N,(x)modp,(x)=b,(x). In this case N,(x)=N,(x)+7 (x)p,(x). Next, it is necessary to add the
product D1(X) P, (%) until the congruence N, (x)modp,(x) =b,(x), where
N3(x) = N, (x) + 7, (x) p(x) po (%), 18 fulfilled. This procedure continues until the last equation (5)
is satisfied. Analytically, it is written as follows:

Ny(x) =b(x);
Ny (x) = Ny (0) + 71 (x0) py (%) = b (%) + 71 () py (X) 5 N,(x)mod p, (x) =b,(x);
N3 (%) = Ny (xX) + 72 () p1(X) 2 (x) = b () + 71 () p1 (%) + 72 () p1 () p2 (x) 5 N, (x)mod p,(x) =b,(x) ;
N; (X) N; 1(X)+7, (X)Pl (X)Pz (X) -Di (X) s N, (x)modp,(x) =b,(x);
N () =Nx) =N () + 7,102y () Py (%) pr1 (%) 5 Ny (x)modp, (x) =7,(x) .

The search for y,(x) is carried out using the method of undetermined coefficients, and
at each step of the algorithm, the degree of the polynomial y,(x) = Ax' + 4 x™ +...+ Ax+ 4, will
be 1 degree less then p, (x): degy,(x)=degp,, (x)-1.

Let us consider the following example. Let the given system of comparisons be:

N(x)mod(x2 +x+l)5x+3
N(x)mod(x2 +x+2)z 2x+5 (7
N(x)mod@® +2x+1)=x" +4x+1

Without reducing the generality of the problem, we can assume that for polynomials
P1(x), py(),..., pp(x) their degrees satisfy the inequalitiesdegp, >degp, >degp; >...>degp; .
These conditions allow you to take larger steps when performing iterations.

Let us find the value of a(x)in the relation a(x)modp,(x)=5(x). It can be presented in
the form of (;/(x)(x2 +x+1)+x+3)moc(x2+x+2)=2x+5. Here, y(x) is a polynomial that indicates
how many times modulo p,(x)=x’+x+1 must be added to the residue x+3=N,(x) in order to
satisfy the relation Nz(x)mod(x2 +x+2)z 2x+5, where N,(x)=x+3+7, (x)(x2 +x+ 1). Since
p(x)=x"+x+1 is a polynomial of the second degree, it is advisable to present the found
parameter y,(x) in the form of a polynomial of the first degree: y;(x) = 4,x + 4,. Then the product
" (x)(x2 +X+ 1): (4x+ AO)(x2 +X+ 1): A3 +(Ay + Ay ) + (4 + 4y x+ 4y is obtained. To find the
unknown coefficients Ai, consider the congruence
(Alx + (A + A + (4 +A0)x+Ao)mod(x +x+2) ((x +x+2XA1x+AO)+( Ax- AO))mod(x +x+2) xX+2.
Therefore, taking into account the last expressmn coefficients 4 and 4, take the values -1, -2,
and, respectively, y(x)=-x—-2, N,(x)=—x —3x"-3x-2.

307



I. Yakymenko, M. Kasianchuk, I. Shylinska

Next, it is necessary to add the product p,(x)p,(x)= (¥ +x+1Jo? +x+2)=(x +2¢ +4¢ +3x+2)
until the congruence N;(x) mod p;(x) = by(x) 1S satisfied, where
X +dx+1=((—x =3¢ =3x—2)+ 7, (x* +2¢ +4x° +3x+2))modx’ +2x+1). First, the value of
(~x =3¢ =3x—2)mod(x’ +2x+1)=—3x —x—1, which is placed on the left side of the latter

equation, is calculated: 4x*+5x+2=y,(N)(x' +2x +4x* +3x+2)modx’ +2x+1). Having reduced
the modulo degree by 1, parametery,(x) should be searched for in the form of
1) =AX +Ax+ 4, ie., 47 +5x+2=(4 + Ax+A4 ' +206 +4¢ +3x+2)modx +2x+1). As
(x4 +20° +4x% +3x+2 od(x3 +2x+1)= 2x* ~2x, then 4x° +5x+2 =(A2x2 +Alx+AOX2x2 —?_x)moc(x3 +2x+1)
can be obtained. Next the value of (4, + A4x+ A4, J2x* —2x)=24,x" +24x +(24, —24, ) —24x—24,
is calculated and the residue
(24x* +24 +(24, 24, )¢ =24 x—2A)modx’ +2x+1)=(24, —6.4, )F +(—~64 —24 ) —24, —24 is
found. The search for unknown coefficients is reduced to the solution of the system of
equations:

24,-64, =4 A,-34,=2
—6A4 -24, =5, 0r |-64,-24,=5.
—24,-24,=2 —A -4 =1
Its solutions are the values of 4, =—i—Z,A1 =_126’A° =—ll6. So, by substituting 4,, 4, 4, ,

we get the recovered polynomial from its residues according to the proposed algorithm:

NGO =[x =30 =3x—2)4+ (42 + 5x+2)* +20¢ +4x +3x+2)=4x" +13¢° +28¢" +35¢ +287 +13r+2
Therefore, the solution to system (7) is a polynomial, which is obtained without the use of
cumbersome operations and control over the overflow of the bit grid when performing
intermediate calculations.

It should be noted that the proposed method is similar to Garner's algorithm, but the
operation of finding the modular inverse in the ring of polynomials to obtain the corresponding
coefficients is eliminated.

The method for decimal number recovery based on addition of the residue from the
product of moduli. To simplify the calculations used in the proposed method, it is possible to
add not the product of polynomials- moduli, but the residue from this product division by the
corresponding polynomial. The mathematical notation of this method is as follows:

Ni@)=b(x); p,(x)=p,(x)modp,(x);

(N () + 71 ()1 1)) mod ps (%) = by (x) ;

N, =N, +7 () @) pio®) = px)pa()mod ps(x);

(N> @)+ 72 (x)pro(0))mod py (x) = by ()3

Ny(x) =Ny () + 75 (0)p1 (0 p2(0) 5 pi3(0) = pr(0)p> () ps () mod py () ; ®)

(N, () + 7,1 (x)py 1 () mod p, (x) = b,(x) 5

Ni(X) =N () +74 (X)Pl )P () p3(X)...p 1 (%) 5 p1i(x) = p(D)Pr(X)... pi(x)mod p; (x);

(N1 () + 741 ()11 () mod py () = 7. (x);

N@) = Ny (x)= Ny 0+ 741 ()2 (022 () Py (). P ()

Let us consider an example of polynomial recovery from its residues adding the residue
from the product of moduli based on system (7). Since (x2 +x+l)mod(x2 +x+2)E—1, then from
the first comparison (8) we obtain the congruence (x+3—;/1(x))mod(x2 +x+2)z2x+5, in which it
is necessary to determine a polynomial of the first degree y,(x)=4x+ 4, using the method of

undetermined coefficients. Combining the last two equalities, it is possible to obtain
A =-1,4,=-2, respectively y,(x)=—x-2.

308



[HOOPMATHKA TA MATEMATUYHI METO/I1 B MOJIEJIFOBAHHI = 2024 = Tom 14, Ne 4

At the next stage, it is necessary to find the residue from the product
pl(x)pz()c)modp3()c)=((x2 +x+1Xx2 +x+2))mo((x3 +2x+1)=(x4 +2x° +4x° +3x+2)moc(x3 +2x+1)=2x2 —2x
and then N,(x)=—x—3x*—3x—2. Thus, —(x’ +3x* +3x+2)+7,(x(2¢ —2)mod’ +2x+1)=x* +4x+1
or , (xX2x2 —2)mod(x3 +2x+1): 4x* +5x+2. As a result, a polynomial similar to the previous

example is obtained.

Therefore, the developed methods for polynomial recovery from its residues in Z[x] ring
make it possible to avoid complex operations, in particular, division with residues and finding
the inverse element, as well as to perform calculations on polynomials of lower order in
comparison with the classical CRT and Garner's algorithm.

Investigating the time complexity of the proposed methods. To calculate the time dependence
of the developed methods, it is necessary to determine the most time-consuming basic arithmetic
operations. The proposed algorithm includes multiplication, addition, and finding residues in a
polynomial ring. In [28], it was proved that the multiplication problem p(x)-¢(x) requires

O(4nlogn) bit operations (the logarithm is taken at base 2), where »=max{degp(x)),degg(x))} is
the largest degree of the polynomial. Taking into account the complexity of finding residues
[29], the total estimate is 0(511 lo gn) of bitwise operations. It should be noted that the developed

(k<)
2

as finding the residue at each step. Therefore, the total complexity asymptotically approaches

01((k2 +k}r logn).
In the classical Garner’s algorithm, it is necessary to find the multiplicative inverse k

times in the ring of polynomials. In [21] it is stated that the time complexity of the mentioned
operation in the standard basis GF(q") over GF(q) field, taking into account the complexity of

algorithms require multiplication operations, where  is the number of moduli, as well

the Euclidean algorithm O(rzlog2 n) and its consequence O(nlogznloglogn), is equal to

O(nlog2 n(loglogn+1)). In addition, classical Garner’s algorithm includes the same operations as
the developed algorithms, that is, addition, multiplication, and finding residues. Due to this, its
time complexity is O, ((k2 +anlogn)+knlog2 n(loglogn+1)).

Therefore, the proposed algorithm for number recovery from its residues allows reducing
the time complexity fromO, ((k2 —|—anlogn)ﬁ—/’cnlog2 n(loglogn+l)) to O ((k2 - k}r lo gn). Figure 1
shows the graphs that indicate the dependences of the time complexities of the proposed and
classical approaches to a polynomial recovery from its residues in the ring of polynomials when
k=10 and n=1,...,1000.

Om)

6
2:10 T T T T

110° —

5100

0 200 400 600 800 1000

Fig. 1. Graphs of the time complexity dependences of the proposed method O1(n) and Garner’s
algorithm O»(n)
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It can be seen in Figure 1 that the use of the developed method of a polynomial recovery
from its residues in the corresponding ring, which is based on the addition of the product of
moduli-polynomials, allows us to reduce the time complexity. The results of the numerical
experiment show an increase in both time complexities with an increase in dimensions of the
input parameters.

The efficiency of the developed methods is determined by the ratio of the time
complexities and in the general case is noted as follows:

E(nk) = 0, (k,n) _ ((k2 + an logn)+knlog n(loglogn +1)) o1t logn(loglogn +1) )

0, (k,n) (k> +k)nlogn) k+1

Figure 2 shows a graph representing dependence of the proposed method efficiency in
comparison with Garner's algorithm. Input parameters are selected within the following ranges:
1<k<20,a 1<n<100C

En,k)
7 .
A ' i
" ,
5
p—
= =
100 : - >
—()Q()(Ao - — ‘77‘ 2
Q == c 4
206 510 8
0260 1412
b plglée a

Fig. 2. Dependence of the proposed method efficiency in comparison with Garner's algorithm
according to the number of moduli & and polynomial degrees n

It should be noted that the efficiency of the proposed method increases logarithmically

with an increase in the degree of the polynomial, and decreases proportionally with an increase
in the number of moduli.
Conclusions. Methods for the polynomial recovery in Z[x] ring are proposed, which make it
possible to parallelize calculations and avoid the procedure of finding the polynomial
multiplicative inverse due to the operations of adding the product of moduli and the product of
residues from moduli that in turn leads to an increase in efficiency. As a result, the effect is
achieved when the results of intermediate calculations go beyond the set range, which eliminates
the need to find the residue from a polynomial of relatively high order. Analytical expressions
of the time complexities of the proposed approach and Garner's algorithm due to the order of
polynomials and the number of polynomials-moduli are obtained, which show that the use of the
developed method makes it possible to reduce the time complexity. Graphs of the time
complexity and efficiency dependences are presented. It is found that the efficiency of the
proposed methods increases logarithmically with an increase in the degrees of polynomials, and
decreases proportionally with an increase in the number of moduli.
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[HOOPMATHKA TA MATEMATUYHI METO/I1 B MOJIEJIFOBAHHI = 2024 = Tom 14, Ne 4

METOJ BITHOBJIEHHA IIOJIIHOMIB 3A IX 3AJIMIIKAMU HA OCHOBI
OIIEPAIII TOJABAHHSA B KUUIBLI Z[X]

L. SIxkumenko, M. Kacsuuayk, 1. [luninceka

3axiTHOYKpaTHChKUI HAIlIOHATHHUHN YHIBEPCUTET
11, JIsBiBCcBKa By, TepHominb, 46009, Ykpaina
Emails: iyakymenko@ukr.net, kasyanchuk@ukr.net

[IpencraBneHo METOIM BiTHOBJIEHHS MOJIHOMIB 3a 1X 3aMUIIKamMy B KTkl Z[X]. JlaHa 3a1a4a € akTyaibHOO JJIs
3aCTOCYBaHHSI B aCUMETPUYHIN Ta cUMETpHYHiN KpunTorpadii, alropurMax 3aBago3axXHUIIEHOTO KOIYBaHHS,
KOHTPOJIIO Ta BiJJHOBJICHHIO TIOMWJIOK B IPOLECI NEpeiaBaHHs MAaKeTiB AaHUX B KOMIT FOTEPHHX Mepexax Ta
PO3MOALICHOMY 30epiraHHio JaHuX. PO3IIsSHYTO TeOpETHYHI OCHOBH BiIHOBIJICHHSI TOJIHOMIB B KUIBI[i MOJTIHOMIB
Ha OCHOBI BIIOMHX TiIXOIIB, a caMe, KHTalChKOI TeOpeMH IO 3aIUIIKH, aNrOpuTMy [ apHepa, BU3HAUEHO iX
TepeBary Ta HeAOMiKH. PO3po0iieHo HOBI METOM 3BOPOTHOTO NIEPETBOPEHHS 3 CHCTEMH 3aJIMIIKOBHX KJIaciB Ha
OCHOBI omeparii qogaBaHHs 100yTKY MOAYIIIB Ta JOOYTKY 3aJHMIIKiB OMiHOMIB. [To0y10BaHO aHANITHYHI BHpa3n
YaCOBHUX CKJIAJHOIIIB 3alPOIIOHOBAHOr0 MeToxy i anroputMmy I'apHepa. [IpencraBneHo ix rpadiuHy 3aJIe)KHICTB,
sgKa BKa3ye Ha Te, IO pPO3pOOJCHWH WiAXix BITHOBJICHHSA IOJIHOMa IO HOTO 3alHIOKaX y Kutbli Z[X]
XapaKTepU3YEThCSl MEHILOIO CKIIAIHICTIO. BcTaHOBIEHO, 1110 MU 301IbIIEH] PO3MIPHOCTI BXITHUX MapameTpiB
3pOCTAIOTh YaCOBI CKJIAJHOCTI 000X MeToiB. JlociikeHo e(heKTUBHICTh BUKOPUCTAHHS PO3POOJICHOTO METOY Y
Kinpli Z[X], sika BKa3zye Ha JjorapuMiuHe 3pOCTaHHS NP 30UIBLICHHI CTENEHIB MOJIHOMA, 1 MpOMOpLiiiHe
3MEHILEHHS Y BUNIAJIKY 30UIbIIEHI KITBKOCTI MOJTYJIIB.

KoarouoBi cjioBa: BiHOBIEHHS MOJIHOMIB, KiJIblle TOJNIHOMIB, 3aMIIKH, KuTalicbka TeopeMa Mpo ajiropuTMm
I'apHepa, 4acoBa CKJIaHICTh, €()EKTUBHICTb.
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